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A B S T R A C T

Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally
based on limited data. Despite the biological importance of the multiple interacting processes, their effects
remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal
multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for
local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identifica-
tion of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at
the population-based level for studying late onset Alzheimer’s disease (LOAD). By interrelating six different
neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal altera-
tions in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity,
structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-
likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a
unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant
direct interactions. Furthermore, using theoretical control analysis of the identified population-based multi-
factorial causal network, we show the crucial advantage of using combinatorial over single-target treatments,
explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency
ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this
work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain
both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple
interventional strategies.

Introduction

Brain disorders are thought to be caused by multiple concomitant
factors (Sheikh et al., 2012). In most typical generative models of brain
dynamics and disease progression, neuronal function or misfolded
protein alterations are considered to take action locally and spread
through anatomical connections (Cabral et al., 2012; Friston et al.,
2014; Iturria-Medina et al., 2014; Mišić et al., 2015; Raj et al., 2012;
Sanz Leon et al., 2013; Sanz-Leon et al., 2015; Sotero et al., 2007; Stam
et al., 2016; Valdes-sosa et al., 2011a). However, consistent evidence

supports that other complex multifactorial mechanisms present major
pathological roles (Bero et al., 2011; Crossley et al., 2014; Iturria-
Medina and Evans, 2015; Schwarz and et al., 2004; Wu et al., 2016).
For example, in the context of neurodegeneration, neuronal structural
degeneration can trigger functional hyperexcitability, being an impor-
tant cellular pathomechanism underlying network dysfunction
(Šišková et al., 2014). Cerebral blood flow (CBF) dysregulation
decouples energy supply and neural function (Andreone et al., 2015).
Vascular dysregulation can also impact amyloid-ß (Aß) clearance, due
to the fact that Aß efflux across the brain blood barrier (BBB)

http://dx.doi.org/10.1016/j.neuroimage.2017.02.058
Received 24 October 2016; Accepted 21 February 2017

⁎ Correspondence to: Montreal Neurological Institute, McGill University, 3801 University Street, Room NW147, Canada H3A 2B4.

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

E-mail address: iturria.medina@gmail.com (Y. Iturria-Medina).

NeuroImage 152 (2017) 60–77

Available online 28 February 2017
1053-8119/ © 2017 Elsevier Inc. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2017.02.058
http://dx.doi.org/10.1016/j.neuroimage.2017.02.058
http://dx.doi.org/10.1016/j.neuroimage.2017.02.058
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.02.058&domain=pdf


sequestrates Aß proteins (Qosa et al., 2014). Aβ increase has a negative
impact on mitochondrial function, which can increase reactive oxygen
species (ROS) production and alter brain metabolism, reducing also
mitochondrial Aβ clearance in a continuous feed-forward mechanism
(Readnower et al., 2011). Similarly, functional connections to Aβ
binding areas explain the spatial mismatch between regional metabolic
alterations and toxic Aβ presence (Klupp et al., 2014). These interac-
tions reflect that the direct coupling among multiple biological factors
is a key feature of the brain, both in health and disease. Nevertheless,
despite the biological importance of the multifactorial interacting
mechanisms, their effects remain poorly characterized from an inte-
grative analytical perspective. This traditional lack of quantitative
multifactorial causal models is a central obstacle to the identification
of disease-specific triggering pathological events and the development
of effective therapeutic treatments.

Correspondingly, we also continue to lack the analytical models
capable of predicting the multifactorial brain impact of specific
therapeutic interventions. Some pioneering work towards characteriz-
ing the impact of functional stimulation therapies has been recently
proposed (Betzel et al., 2016; Muldoon et al., 2016). However, such
studies have only considered a single biological driver and/or target
factor (i.e. functional activity), failing to quantify the therapeutic
impacts of misfolded proteins, vascular, metabolic, and structural
modifying therapies, or their concurrent impacts on associated cogni-
tive states. Thus far, we could partially summarize current challenges
on brain generative modeling according to three main points: i) no
consideration of local multifactorial biological interactions, ii) no
consideration of the concurrent spreading of multiple pathological
effects across physical brain networks and, importantly, iii) an inability
to predict in advance the multifactorial effects of either single-target or
combinatorial intervention strategies.

Late-onset Alzheimer´s disease (LOAD), the most prevalent form of
dementia (WHO, 2016), is one of the most challenging brain disorders
from a multifactorial modeling perspective. Up to date, all observa-
tional (Jack et al., 2013, 2010) and data-driven (Donohue et al., 2014;
Dukart et al., 2013; Fonteijn et al., 2012; Iturria-Medina et al., 2016;
Young et al., 2014) models that define a multifactorial LOAD patho-
genesis are invariably based on the magnitude levels of the biomarkers,
without accounting for the multiplicity of causal mechanisms that take
place at different spatiotemporal scales (Iturria-Medina et al., 2016).
Suffering also the limitations described above for typical generative
causal models, LOAD studies lack a quantitative causal identification of
the initial pathologic triggering events. Consequently, these studies also
lack of effective therapeutic strategies, while the disease’s worldwide
impact continues to expand. Motivated by the current imperative need
for identifying effective therapeutic agents for this disorder (Chen-
Plotkin, 2014) and by the general lack of analytical brain multifactorial
models, we propose here a 4D multifactorial causal model (MCM) of
brain (dis)organization and cognition. Based on a multifactorial brain
network formulation and the elements of the control theory (Kalman,
1963; Klickstein et al., 2016), this model accounts for regional multi-
factorial causal interactions, pathological propagations through physi-
cal networks (e.g. axonal and vascular connectomes), the subsequent
impact on cognitive integrity, and the identification and effectiveness
assessment of either single-target or combinatorial therapeutic inter-
ventions. The MCM considers that once a factor-specific event occurs in
a given brain region or in a set of regions, it can directly interact with
other biological factors and alter their states. The alterations can also
spread through anatomical and vascular connections to other brain
areas, where similar factor-factor and propagation mechanisms may
occur, in a continuous cycle.

At the population-based level, we found that the MCM is able to
accurately explain/predict multifactorial LOAD alteration patterns and
clarify the disease-triggering pathological mechanisms. Our causal
analysis suggests that an initial vascular disequilibrium in specific
brain areas (e.g. hippocampus and entorhinal regions) may be the

most-likely event triggering LOAD progression (Iadecola, 2004;
Zlokovic, 2011). This may be explained by the high vulnerability/
fragility of the vascular system, which we found to be strongly
influenced by other biological factors (i.e. glucose metabolism and
structural degeneration). Our results also highlight the critical role of
multiple factor-factor interactions, supporting that LOAD is a complex
multifactorial process, where each biological factor has a key role on
disease progression. When used here as an in silico evaluator of
interventional treatments, the MCM provides evidence for the strategic
importance of creating effective combinatorial therapies and the crucial
need for considering multiple brain factors as endpoints, instead of
merely cognitive biomarkers. It also provides an efficiency ranking of
multiple possible LOAD interventions, which might explain why recent
one-target Aβ based therapies failed to improve clinical outcomes in
LOAD (Doody et al., 2014; Salloway et al., 2014). Finally, we
emphasize that the proposed model and associated controllability/
therapeutic analysis are potentially extendable and applicable to
numerous brain disorders. This further offers hope towards the
assisted personalized intervention of brain pathologies, based on the
computational characterization and controlling of individual multi-
factorial mechanisms at multiple spatiotemporal scales, from local
neuronal circuits to macroscopic brain networks.

Methods

Ethics statement

The study was conducted according to Good Clinical Practice
guidelines, the Declaration of Helsinki, US 21CFR Part 50 –
Protection of Human Subjects, and Part 56 – Institutional Review
Boards, and pursuant to state and federal HIPAA regulations (adni.-
loni.usc.edu). Study subjects (Table S1) and/or authorized representa-
tives gave written informed consent at the time of enrollment for
sample collection and completed questionnaires approved by each
participating site Institutional Review Board (IRB). The authors
obtained approval from the ADNI Data Sharing and Publications
Committee for data use and publication, see documents http://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_
Agreement.pdf and http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Manuscript_Citations.pdf, respectively.

Data description and processing

Study participants
This study used 561 individual baseline data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). At least
three different imaging modalities were acquired for each included
subject (i.e. structural MRI, Fluorodeoxyglucose PET, resting
Functional MRI, Arterial Spin Labeling and/or Amyloid-ß PET). The
ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

See Table S1 for demographic characteristics of the included ADNI
subjects.

Structural MRI acquisition/processing
Brain structural T1-weighted 3D images were acquired for all

subjects. For a detailed description of acquisition details, see http://
adni.loni.usc.edu/methods/documents/mri-protocols/. All images
underwent non-uniformity correction using the N3 algorithm (Sled
et al., 1998). Next, they were segmented into grey matter, white matter
and cerebrospinal fluid (CSF) probabilistic maps, using SPM12 (www.
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fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to
MNI space (Evans et al., 1994) using the DARTEL tool (Ashburner,
2007). Each map was modulated in order to preserve the total amount
of signal/tissue. Mean grey matter density and determinant of the
Jacobian (DJ) (Ashburner, 2007) values were calculated for 78 regions
covering all the brain’s grey matter (Klein and Tourville, 2012). For
each region, obtained grey matter density and DJ values were
statistically controlled for differences in acquisition protocols. Both
measurements provided equivalent modeling results. All the results/
figures presented in this study correspond to the DJ, which constitutes
a robust local measure of structural atrophy.

Fluorodeoxyglucose PET acquisition/processing
A 185 MBq (5+0.5 mCi) of [18F]-FDG was administered to each

participant and brain PET imaging data were acquired approximately
20 min post-injection. All images were corrected using measured
attenuation. Also, images were preprocessed according to four main
steps (Jagust et al., 2010): 1) dynamic co-registration (separate frames
were co-registered to one another lessening the effects of patient
motion), 2) across time averaging, 3) re-sampling and reorientation
from native space to a standard voxel image grid space (“AC-PC”
space), and 4) spatial filtering to produce images of a uniform isotropic
resolution of 8 mm FWHM. Next, using the registration parameters
obtained for the structural T1 image with nearest acquisition date, all
FDG-PET images were spatially normalized to the MNI space (Evans
et al., 1994). Regional standardized uptake value ratio (SUVR) values
for the 78 regions considered (Klein and Tourville, 2012) were
calculated using the cerebellum as reference region.

Resting fMRI acquisition/processing
Resting-state functional images were obtained using an echo-planar

imaging sequence on a 3.0-Tesla Philips MRI scanner. Acquisition
parameters were: 140 time points, repetition time (TR)=3000 ms, echo
time (TE)=30 ms, flip angle=80°, number of slices=48, slice thick-
ness=3.3 mm, spatial resolution=3×3×3 mm3 and in plane ma-
trix=64×64. Preprocessing steps included: 1) motion correction, 2)
slice timing correction, 3) spatial normalization to MNI space (Evans
et al., 1994) using the registration parameters obtained for the
structural T1 image with the nearest acquisition date, and 4) signal
filtering to keep only low frequency fluctuations (0.01–0.08 Hz) (Chao-
Gan and Yu-Feng, 2010). In order to have regional quantitative
indicators of the brain’s functional integrity, fractional amplitude of
low-frequency fluctuation (fALFF) (Zou et al., 2008), regional homo-
geneity (ReHo) (Zang et al., 2004), and functional connectivity degree
(van den Heuvel and Hulshoff Pol, 2010) measures were calculated for
each considered brain region. Among these three measurements,
fALFF showed the highest sensibility to disease progression (Iturria-
Medina et al., 2016). Consequently, all the analyses and results
presented in this study correspond to this measure.

ASL acquisition/processing
Resting Arterial Spin Labeling (ASL) data were acquired using the

Siemens product PICORE sequence. Acquisition parameters were: TR/
TE=3400/12 ms, TI1/TI2=700/1900 ms, FOV=256 mm, 24 sequential
4 mm thick slices with a 25% gap between the adjacent slices, partial
Fourier factor=6/8, bandwidth=2368 Hz/pix, and imaging ma-
trix=64×64. For preprocessing details see “UCSF ASL Perfusion
Processing Methods” in www.adni.loni.usc.edu. In summary, main
preprocessing steps included: 1) motion correction, 2) perfusion-
weighted images (PWI) computation, 3) intensity scaling, 4) CBF
images calculation, 5) spatial normalization to MNI space (Evans
et al., 1994) using the registration parameters obtained for the
structural T1 image with the nearest acquisition date, and 6) mean
CBF calculation for each considered brain region.

Amyloid-ß PET acquisition/processing
A 370 MBq (10 mCi ± 10%) bolus injection of AV-45 was adminis-

tered to each participant, and 20 min continuous brain PET imaging
scans were acquired approximately 50 min post-injection. The images
were reconstructed immediately after the 20 min scan, and when
motion artifact was detected, another 20 min continuous scan was
acquired. For each individual PET acquisition, images were initially
preprocessed according to four main steps (Jagust et al., 2010): 1)
dynamic co-registration (separate frames were co-registered to one
another lessening the effects of patient motion), 2) across time
averaging, 3) re-sampling and reorientation from native space to a
standard voxel image grid space (“AC-PC” space), and 4) spatial
filtering to produce images of a uniform isotropic resolution of 8 mm
FWHM. Next, using the registration parameters obtained for the
structural T1 image with the nearest acquisition date, all amyloid
images were spatially normalized to the MNI space (Evans et al., 1994).
Considering the Cerebellum as an Aß non-specific binding reference,
SUVR values for the 78 grey matter regions considered were calculated.

Diffusion weighted MRI (DW-MRI) acquisition
High angular resolution diffusion imaging (HARDI) data was

acquired for 225 subjects. For each diffusion scan, 46 separate images
were acquired, with 5 b0 images (no diffusion sensitization) and 41
diffusion-weighted images (b=1000 s/mm2). Other acquisition para-
meters were: 256×256 matrix, voxel size: 2.7×2.7×2.7 mm3,
TR=9000 ms, 52 contiguous axial slices, and scan time 9 min. ADNI
aligned all raw volumes to the average b0 image, corrected head motion
and eddy current distortions. See Multimodal connectivity estimation
subsection for anatomical network reconstruction details.

Data quality control and clinical homogenization
In order to control for possible noise and heterogeneity effects,

before model fitting and evaluations we performed a robust data
homogeneity/quality control, consisting of two main steps (described
previously in (Iturria-Medina et al., 2016)):

i) Calculation of individual likelihood scores reflecting how accurately
each subject was diagnosed by the clinical experts, and subsequent
elimination of the subjects with low likelihood scores (below the
10th percentile).

ii) For each biomarker and clinical group, outlier identification was
performed based on the Mahalanobis distance (Wilks, 1966), with a
significative squared distance (P < 0.05) meaning an outlier (for
implementation details, see (Trujillo-Ortiz et al., 2006)). Outlier
detection for imaging biomarkers considered all brain regions,
using the multivariate Mahalanobis distance.

Step (i) controlled for cognitive heterogeneity, whereas (iii) con-
trolled for variability and noise on biological measurements, improving
both cognitive and biological data homogeneity at the clinical group
levels.

Multimodal connectivity estimation

Vascular Networks
For each clinical group, direct region-region vascular connectivity

measurements, in the range C ∈[0,1]j i
vasc
→ , were obtained using tree-based

ensemble Random Forests (Huynh-Thu et al., 2010) and the prepro-
cessed/regional CBF data. This algorithm, known as GENIE3, is
commonly employed to reconstruct direct gene regulatory networks,
demonstrating high predictive accuracy and outperforming other
popular connectivity methods on both synthetic and real data.
GENIE3 decomposes the prediction of a direct network between N
nodes (brain regions) into N different hierarchical regression problems,
and reduces the number of possible interactions (possible predictors of
each node) based on an automatic feature selection with tree-based
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ensemble methods. It is a generic algorithm, adaptable to different
types of associative data and linear/nonlinear interactions (Huynh-Thu
et al., 2010). Due to the statistical nature of the GENIE3 algorithm, the
obtained vascular networks would be reflecting covariance patterns
among the regions, similarly to functional and structural networks
created via association techniques (Evans, 2013; Monti et al., 2014;
van den Heuvel and Hulshoff Pol, 2010). However, a crucial distinction
is that GENIE3 controls for indirect relationships among the nodes,
providing only the statistical evidence/likelihood supporting each
potential direct vascular interaction.

Anatomical Networks
Probabilistic axonal connectivity values between each brain voxel

and the surface of each considered gray matter region (voxel-region
connectivity) were estimated using a fully automated fiber tractography
algorithm (Iturria-Medina et al., 2007) and the intravoxel fiber

distributions (ODFs) of 225 healthy and diseased subjects from
ADNI (Table S1). ODF reconstructions were based on Spherical
Deconvolution (Tournier et al., 2008). A maximum of 500 mm trace
length and a curvature threshold of ± 90° were imposed as tracking
parameters. Based on the resulting voxel-region connectivity maps, the
individual region-region anatomical connection density matrices
(Iturria-Medina et al., 2007) were calculated. For any subject and pair
of regions i and j, the ACDi,j measure ( ACD0 ≤ ≤1i j, , ACDij ≡ ACDji)
reflects the fraction of the region’s surface involved in the axonal
connection with respect to the total surface of both regions. For each
clinical state clin, we calculated its characteristic anatomical network
Cj i

anat
→ as the average ACD matrix from the subjects at that clinical state.
Finally, the (dis)similarity between the reconstructed vascular and

anatomical networks was evaluated via a Mantel test with permuta-
tions. For associated results, see Characterizing direct factor-factor
interactions and intra-brain propagation properties subsection.

Fig. 1. Representation of the MCM approach. a) Brain multimodal images and cognitive evaluation used in this study. b) State space vectors (S), characterizing the brain’s multifactorial
alteration/disequilibrium levels with regard to a baseline, across regions and at different disease stages. Here, we used the average data of the clinically normal subjects to define the
initial baseline. The alteration/disequilibrium levels are calculated then as the standardized difference with the baseline. c) Causal multifactorial propagation network (matrix A, see
Methods and Text S1) capturing the direct interactions among regions (for each biological factor/imaging modality) or among factors (for each brain region). Diagonal blocks in A
correspond to a unique biological factor, with diagonal elements accounting for intraregional effects (e.g. local regional balance among: functional hyper excitation and inhibition,
production and degradation of misfolded proteins, or proliferation and restoration of damaged tissue properties) and off-diagonal elements accounting for interregional alterations
spreading across physical connections. Off-diagonal blocks in A correspond to the direct interactions among two different factors (e.g. glucose metabolism impact on tissue properties, or
vice versa). d) System’s output vector (β), representing the influence of the brain’s multifactorial state space on the cognitive state (for obtained values, see Table S3 and Fig. S3). e)

Conceptual MCM. f) Reconstructed multimodal trajectories after introducing an initial alteration in a specific brain region and factor, followed by a hypothetical low-cost input
therapeutic signal (u). Notice the strong cognitive deterioration with disease progression, from transition HC to LOAD, and how it is recovered at the hypothetical post-treatment (POST-
T) point. See also Videos S1–S5 and Figs. 7, 8. For visualization purposes, in (f) the cognitive variable was rescaled to the range [10-20].
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Multifactorial causal model of brain (dis)organization and
therapeutic intervention

Here we consider the brain as a dynamic multifactorial causal
system, where: i) each system node (or variable) models a relevant
biological factor at a given brain region, and ii) alterations in each
biological factor are caused by direct factor-factor interactions and/or
external inputs. For example, in the context of our LOAD study, we
consider Nfactors=5 different biological factors (i.e. vascular flow, Aß
deposition, glucose metabolism, functional activity at rest, and gray
matter density), each measured at Nrois=78 different brain regions of
interest (Klein and Tourville, 2012) covering all the brain’s gray matter
(see Fig. 1). Each node, corresponding to a given biological factor m
and region i, is characterized by its alteration/disequilibrium level,
S ∈i

m  , reflecting the dissimilarity/distance to an initial state (S =0i
m ,

S <0i
m , or S >0i

m indicating non alteration, decrease, or increment with
regard to baseline, respectively). Also, to model the direct coupling
between all factors, the system is characterized by a dynamic multi-
factorial direct interaction network (A), where each directed
edge corresponds to a factor-factor interaction (for schematic
representation, see Fig. 1c; for biological examples, see first
paragraph of Introduction and third-fourth paragraphs of
Discussion). In summary, at each time point the described brain
system is defined by the [NfactorsNroisx1] state space vector

S t S t S t S t S t( )=[ ( ), ( ),…, ( ),…, ( )]i
m

Nrois
N T

1
1

2
1 factors and A t( ) (Fig. 1b–c).

In the absence of external inputs, the dynamic behavior of the
proposed brain system will depend only on the direct interactions
among its nodes, which are defined by: (i) the local direct interactions
among all the biological factors, constrained within each brain region,
(ii) the potential propagation of factors-specific alterations through
“physical” networks (i.e. anatomical and/or vascular networks), and
(iii) the preservation, during the propagation processes, of the new
generated intra-factorial alterations. These processes can be described
by the differential equation model:

∑ ∑ ∑dS
dt

α S C t S S C t S S= + ( ) − ( ) .i
m

n

N n m
i
n

j
j i

N
j i
m m

j
m

j
j i

N
i j
m m

i
m

=1
→

=1,
≠

→ =1,
≠

→
factors rois rois

(1)

The first term ( α S∑n
N n m

i
n

=1
→factors ), models the local direct influences of

multiple biological factors on the given factorm. αn m→ is the interaction
parameter controlling the direct intra-regional impact of the factor n
over factor m, including intra-factor effects (i.e. n = m). Note that these
interactions occur only inside each brain region, without mediation of
inter-regional effects (for biological examples, see first paragraph of
Introduction and third-fourth paragraphs of Discussion).

The second term ( C t S S∑ ( )j
j i

N
j i
m m

j
m

=1,
≠

→
rois ), models the changes in Si

m due

to the input of signals of the same factor m, from other physically
connected brain regions. This propagation can occur through the
anatomical and/or vascular connectomes, depending of the spreading
mechanisms associated each biological factor. For example, a vascular
alteration should propagate mostly, if not entirely, by the brain’s
vascular network, while the Aß proteins may propagate through both
the anatomical and the vascular networks (Iturria-Medina et al., 2014;
Qosa et al., 2014). In order to capture the multiplicity of different
spreading mechanisms, for each factor m we define its characteristic
dynamic multimodal network (with connection value C t( )j i

m
→ , for each

pair of brain regions j and i). This factor-specific network reflects how
much the alterations in factor m propagate from region j, by the
vascular and/or the anatomical networks, to impact the same factor m
at region i, allowing the estimation of the fraction that propagates by
one or the other connectional substrate. Consequently, for each factor
m the corresponding dynamic multimodal network is defined as the
weighted combination:

C t w C t w C t( ) = ( ) + (1 − ) ( ),j i
m m

j i
vasc m

j i
anat

→ → , → (2)

where w ∈[0,1]m is the fraction of the propagation (of factor m) that
spread through the vascular connection (C t( )j i

vasc
→ ) and w(1 − )m is the

remaining fraction that spread through the anatomical connection
(C t( )j i

anat
→ ). S >0m is a propagation weight parameter for each factor m,

reflecting the factor’s global tendency to spread through brain connec-
tions. See Multimodal connectivity estimation subsection (above) for
details about the vascular/anatomical network construction.

The last term ( C t S S∑ ( )j
j i

N
i j
m m

i
m

=1,
≠

→
rois ), reflects the amount of signal for

factor m that propagates from region i to all other brain regions,
through factor m’s characteristic dynamic multimodal network. The
addition of this term guarantees the instantaneous preservation of the
new alterations generated in each region i. Once an increment or
decrease occurs in the alteration/disequilibrium level of factor m at
region i, this alteration can partially or totally propagate to other brain
regions, depending of factor m’s propagation capacity and the multi-
modal connectional pattern of region i (reflected in Sm and Ci j

m
→ ,

respectively). Thus, it is necessary to discount the alteration level that
is leaving region i.

In addition, in order to capture cognitive (Cog) alterations asso-
ciated with pathological progression, the expression (1) is accompanied
by the algebraic expression:

∑ ∑Cog t β β S t( ) = + ( ).cog
m

N

i

N
i
m cog

i
m

0 =1
,factors rois

(3)

Cog is modeled by additive linear relationships, considering the
brain’s multifactorial alterations as modulators. Both expressions (1)
and (3) describe the brain’s dynamic and cognitive state, and they can
be rewritten in vector form by the linear dynamic system:

⎪

⎪

⎧
⎨
⎩

A t S
Cog βS

= ( ) ,
= ,

Sd
dt

(4)

where A t( ) is the dynamic multifactorial direct interaction network,
which as previously mentioned defines the complex dynamic of the
brain system (see Fig. 1c). It is a [NfactorsNrois×NfactorsNrois]
asymmetric matrix characterizing all the multifactorial interactions at
time t. It depends on the model parameters (α S w, ,n m m m→ ) which are
estimated during model fitting, and also on the brain’s connection
properties (C t( )i j

m
→ ), estimated a priori. See Text S1 for the explicit

analytical expression of A t( ). β β β= [ … ]cog
N
N cog T

0
,

rois
factors is the system’s

output vector, which define the relation between the state space (S) and
the cognitive state. All β coefficients in (3 and 4) correspond to fixed
effects across the entire population and are estimated a priori using a
robust linear regression algorithm (Street et al., 1988). The initial
condition of this system, S t( )0 and Cog t( )0 , define the multifactorial
alteration/disequilibrium level and cognitive properties at the initial
time point of interest for the modeling process (t0). In this study, t0 is
assumed as the disease onset time, at which a regionally localized
deviation from a theoretical pathology-free state starts.

To account for external inputs on the introduced brain dynamic
system, according to control theory (Kalman, 1963; Liu et al., 2011),
expression (4) can be extended as:

⎪
⎪

⎧
⎨
⎩

A t S Bu

Cog βS

= ( ) + ,

= ,

Sd
dt

(5)

where B is an [NfactorsNroisxM] input matrix (M≤NfactorsNrois) that
identifies M nodes (brain regions of any specific biological factor or
factors) controlled by an outside controller (Kalman, 1963; Liu et al.,
2011). u t u t u t( )=[ ( )… ( )]M1 is the associated time-dependent input
signal.

In the context of neurological disorders, an effective therapeutic
treatment should drive the patient from an abnormal cognitive/clinical
state (Cog0) to a final normal state (Cogf ). In order to accomplish this,
we will explore two different controlling strategies: i) output control
strategy, focusing mostly in the control of the system’s cognitive
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output, and ii) full control strategy, focusing in the control of every
state node, which indirectly will modify the system’s output. For the
output control strategy, the reduction on the number of target
variables can substantially decrease the amount of driver nodes and
control energy, particularly in comparison to the full network control
case (Gao et al., 2014; Klickstein et al., 2016). Thus, for each
hypothetical set of controlling nodes B, if we consider a given time
period with constant (or approximately constant) causal network
matrix A, the optimum input signal to minimize the output control
energy can be estimated as (Klickstein et al., 2016):

u t B e β βWβ D( ) = − ( ) ,opt
Cog Cog T A t t T T→ ( − ) −1f T f0

(6)

where W is the controllability gramian matrix (Kailah, 1980):

∫W t t e BB e dt( , ) = ,f
t

t
A t t T A t t

0
( − ) ( − )

f T

0

0 0
(7)

and D βe S t Cog= ( ( )− )A t t
f

( − )
0f is the difference between the desired final

and the final output under the free evolution. For the full control
strategy, the optimum input signal can be estimated as (Klickstein
et al., 2016):

u t B e W D( ) = − ,opt
S S T A t t→ ( − ) −1f T f0

(8)

being D e S t S t= ( ( )− ( ))A t t
f

( − )
0f the difference between the final and

desired final state space vector under the free and controlled evolution,
respectively.

Finally, for each controlling strategy, the cost-energy function
associated to the set of nodes B with optimum strategy uopt (i.e.

uopt
Cog Cog→ f0 or uopt

S S→ f0 ) is:

∫J B u u t u t dt( , ) = ( ( )) ( ) .opt
t

t
opt

T
opt

f

0 (9)

See Text S1 for the explicit analytical expression of A t( ), Text S2 for
model optimization algorithm, and following subsections for model
interpretation and evaluation details.

Interpreting factor-factor direct interactions and alteration spread

As mentioned, the dynamic multifactorial direct interaction net-
work A t( ) defines the complex dynamic of the brain system. Thus, the
characterization and interpretation of this network, in biological terms,
is crucial for understanding the complex mechanisms underlying a
given brain (dis)organization process. However, due to the arbitrary
scale of the interaction and spreading parameters (αn m→ and Sm

coefficients), the comparison and interpretation requires an appro-
priate normalization procedure, correcting for all possible interactions/
spreading effects in the multifactorial network. To accomplish this,
here we defined four different measures:

The relative factor-factor influence I n m( → ) reflects the percent of
regional changes in factor m that are caused by the direct influence of
factor n. It is calculated as the sum of the direct effects of n over m,
across all brain regions (reflected in the αn m→ coefficient), relative to
the total direct effects of all the biological factors overm, including self-
effects. Mathematically:

∫I n m α N
α N S C t

dt( → ) = 100*
∑ + ∑ ( )

.
t

t n m
rois

k
N k m

rois
m

i j i j
N

i j
m

→

=1
→

, , ≠ →
factors rois0 (10)

The relative outgoing influence I n( →), similar to the out-strength
measure in a directed network (see Rubinov and Sporns, 2010), reflects
the percent of regional changes in all the considered biological factors
that are caused by the direct influence of a given biological factor n,
excluding self-effects. This measure can be particularly useful to detect
the most influential biological factors during a brain process.

The relative incoming influence I m( ←), similar to the in-strength
measure in a directed network (Rubinov and Sporns, 2010), reflects the
percent of regional changes in factor m that are caused by the direct

influences of all the other biological factors, excluding self-effects. This
measure allows the identification of the most vulnerable and influenced
biological factors during a given brain process.

Finally, the relative spreading Diff m( ) reflect the percent of the
regional changes in factor m that are caused by intra-factor spreading
through the brain’s physical connections. Mathematically:

∫Diff m
S C

α N S C t
dt( ) = 100*

∑

∑ + ∑ ( )
.

t

t m
i j i j
N

i j
m

k
N k m

rois
m

i j i j
N

i j
m

, , ≠ →

=1
→

, , ≠ →

rois

factors rois0 (11)

Model evaluation and validation with real data

Disease progression analysis
First, we aimed to reproduce and predict the characteristic multi-

factorial alteration patterns of LOAD evolution. The analysis consisted
of introducing a small alteration at a hypothetical free-pathology state,
modeling an initial disease triggering event, and evaluating the model’s
accuracy to explain or predict the imaging and cognitive data available
for all the subjects at early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and LOAD states, guaranteeing the
spatiotemporal continuity across clinical transitions. Before model
fitting and evaluations, all considered imaging and cognitive descrip-
tors were previously controlled for age, gender, number of apoeε4 allele
copies, educational level and all their possible pairwise interactions.
Also, in order to control for possible noise and heterogeneity effects, we
performed a robust data homogeneity/quality control, consisting of two
main steps that controlled for variability and noise in measurements,
improving both biological and cognitive data homogeneity at the
clinical group levels (see Data quality control and clinical homogeni-
zation subsection). Then, all subjects were aligned according to their
clinical state, obtaining a multimodal sample in which the individual
observations are ordered in terms of disease severity, and covering the
whole LOAD evolution.

Notice that in the case of an analysis based in disease evolution, the
time variable in (1–9) loses its “aging” interpretation. The time
component is relevant only for the individual cases and at the group
level this variable should be interpreted instead in terms of disease
progression. Consequently, in this case the time variable (t) was
replaced by a continuous disease progression variable (DP∈[0,1]),
assuming DP=0 for an ideal clinically normal state (HC) and DP=1
for the most advanced disease state (LOAD). DP values for EMCI and
LMCI (DPEMCI and DPLMCI , respectively) are estimated automatically by
the model´s optimization algorithm (see below and Text S2). As all the
biological/cognitive descriptors were previously controlled by age and
its interactions with the other demographic variables, the use of the DP
variable as the progressive component in the model enables focusing
on the multivariate changes directly associated to the pathologic
evolution, without the confounding effects of the temporal/aging
process.

Then, for each factor m, brain region i, and subject k at the disease
progression state DP, we calculated its alteration level as the deviation
from the characteristic clinically normal state:

S DP x DP μ HC( ) = ( ( ) − ( )),k i
m

k i
m

i
m

, , (12)

where x DP( )k i
m
, is the observed individual value, and μ HC( )i

m is the
mean value observed for the clinically normal group, respectively, after
controlling for the mentioned covariables and all their possible
pairwise interactions. Importantly, in order to make the alteration
patterns and their associated model parameters comparable across all
imaging modalities, for each imaging modality, all alteration levels
were standardized to have standard deviation 1 across subjects and
regions.

It is important to consider that, for a discrete number of possible
clinical states Nclin (i.e. clin=1.4, corresponding to HC, EMCI, LMCI
and LOAD clinical states respectively), after substituting the time
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variable (t) by the disease progression variable (DP), the state space
system in (1, 3 and 5) has the following analytical solution:

⎛
⎝⎜

⎞
⎠⎟∏S DP e S DP( ) = ( ).

DP

DP A DP DP DP( ) ∙ ( − )
0

clin

clin Nclin clin
=1

= −1

(13)

DP0 is the disease onset point, at which the regionally localized
deviation from a theoretical pathology-free state starts. In this case,
the model’s optimization function is:

⎛
⎝⎜

⎞
⎠⎟∑ ∑ ∑ ∑

N
S DP S DP(∅) = 1 ( ( ) − ˆ ( ; ∅)) ,

DP

DP

m

N

i

N

m s

N
k i
m

i
m

=1 =1 =1 ,

2

clin

clin Nclin factors rois m

=1

=

(14)

where Nm is the number of subjects with available data for the biological
factor m. S DP;ˆ ( ∅)i

m
is the estimated alteration level for factor m and

brain region i, at the disease state DP, for the set of model parameters
∅.

Next, all the biological factors (m=1.5) and brain regions (i.e. a total
of 5∙78 = 390, for the used five imaging modalities and brain parcella-
tion), were explored as possible candidates (causal epicenters) to start
the LOAD pathologic process. For this, we defined a novel optimization
algorithm (see Text S2) that allows the estimation of the optimum
initial pathologic perturbation (S DP( )0 ), and the corresponding model
parameters ( α S w DP DP∅ = [ ]n m m m EMCI LMCI→ , for n,m=1:5) that better
explain (minimizing expression (11)) the reference alteration patterns
across all the subjects and the three different clinical states (EMCI,
LMCI, LOAD). The two steps optimization was performed using a least
squares regularization method (Tibshirani, 1996) and the trust-region-
reflective least squares algorithm (Coleman and Li, 1996, 1992),
implemented in the MATLAB functions lasso and lsqnonlin, respec-
tively.

Model cross-validation
In order to evaluate the MCM’s predictive power on new instances

of data, we first used the multifactorial alteration patterns observed for
subjects at EMCI and LMCI states to predict the future trajectories of
the data, fitting the model with only these two states and projecting the
alteration pattern at DP=1 (i.e. the disease progression state or time
that a hypothetical subject should reach the LOAD stage). Secondly, we
evaluated the model’s capacity to predict the past trajectories of the
data, fitting the model with the subjects at the LMCI and LOAD states
and projecting (via backward integration) the alteration pattern at
DP DP= EMCI . Notice that, for this particular case, a high accuracy
predicting the multifactorial alteration pattern for the EMCI stage
(from the future instances of data) would be supporting also the
validity of the estimated initial pathologic perturbation (S DP( )0 ),
described in the previous subsubsection and Text S2. Finally, we
repeated the same procedure but now using EMCI and LOAD subjects
to predict the alteration patterns for LMCI subjects, evaluating the
model’s capacity to predict intermediary disease stages. For associated
results, see Reproducing and predicting multifactorial alteration
patterns in LOAD progression subsection.

Most-likely disease triggering events and regional epicenters
We used a bootstrapping procedure, creating Nboots=500 different

data sets with replacement, and repeating the previous model optimi-
zation, to identify the most-likely/probable disease triggering factor(s)
and associated regional epicenter(s), across all generated samples. For
each factorm, its probability of being a potential triggering factor of the
LOAD process was calculated as:

P DP
Factor DP
N

( ) =
∑ ( )

,m b
N m

boots
0

=1 0
boots

(15)

where Factor DP( )m
0 is a step function, reflecting if factor m is altered or

not, at least for one brain region, at the initial condition:

⎧⎨⎩Factor DP ifS DP foranyregioni i N
otherwise

( ) = 1, ˆ ( )≠0 ( =1 : )
0,

.m i
m

rois
0

0

(16)

Similarly, for each brain region i, its probability of being a disease
spatial epicenter, was calculated as:

P DP
Region DP
N

( ) =
∑ ( )

,i
b
N

i

boots
0

=1 0
boots

(17)

with:

⎧⎨⎩Region DP ifS DP foranyfactorm m N
otherwise

( ) = 1, ˆ ( )≠0 ( =1 : )
0,

.i
i
m

factors
0

0

(18)

For associated results, see Identifying potential triggering events
in LOAD subsection.

Evaluating possible therapeutic impacts
In order to evaluate the effectiveness of possible one-target or

combinatorial therapies, for each biological factor or combination of
three factors, we used expressions (5)–(9) to estimate the optimum
input signal and cost-energy to minimize the control energy, during
hypothetical LOAD to HC clinical transitions. For a single-target
intervention, based in a unique driver factor, the input matrix B (Eq.
(5)) was constructed with one for all the nodes/regions corresponding
to this factor, and zero for all the other nodes/regions. Similarly, for a
combinatorial intervention, the matrix B had one for all the nodes/
regions associated to the selected driver factors and zero for the rest.
For associated results, see the Identifying optimum therapeutic
strategies for stopping and reversing LOAD progression subsection.

Robustness to different brain parcellation schemes
In order to explore the model´s robustness to different gray matter

parcellation schemes, we repeated all the previous analyses for the AAL
parcellation (Tzourio-Mazoyer et al., 2002), considering 90 cortical and
subcortical areas covering all the brain´s gray matter. See the
Discussion section (Limitations and future work subsection).

Results

Multifactorial causal model of brain (dis)organization and
intervention

We formulated a novel 4D spatiotemporal multifactorial causal
model that accounts for multiple brain biological factors, cognitive
changes and controllability properties (seeMethods). By estimating the
model’s biological parameters, and performing a multifactorial con-
trollability analysis, it is possible to obtain quantitative information
about: (i) probable initial triggering events and associated “epicenter”
brain regions associated to a given brain (dis)organization process, (ii)
relative factor-factor direct interactions weights, (iii) relative vulner-
ability and influence level of each considered biological factor, (iv)
relative level of intra-brain propagation of each biological factor’s
alteration/disequilibrium, as well as the corresponding fraction that
propagates through specific physical networks (e.g. anatomical and/or
vascular networks), (v) relative times among different clinical sub-
stages of the disorder, and (vi) identification of optimum (i.e. low-cost)
therapeutic strategies to stop/reverse multifactorial pathological pro-
cesses.

Reproducing and predicting multifactorial alteration patterns in
LOAD progression

We used the formulated model to investigate the mechanisms
underlying LOAD development, progression and potential interven-
tions. Similarly to a previous study (Iturria-Medina et al., 2016), we
evaluated Aβ misfolded proteins, glucose metabolism, CBF, functional
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activity in rest, and/or structural brain tissue patterns in a cohort of
561 subjects from the ADNI database (Methods, Study participants;
Table S1). These five biological factors were mapped in vivo using
advanced neuroimaging techniques (Fig. 1; Methods, Data Description
and Processing). Each participant had been previously diagnosed at
each visit as healthy control (HC), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI) or probable
Alzheimer’s disease patient (LOAD). In addition, participants were
cognitively characterised according to the Mini Mental State
Examination (MMSE), which was used here as a measure of cognitive
integrity. For each mentioned biological factor, representative regional
values were calculated for 78 regions covering all the brain’s grey
matter (Klein and Tourville, 2012) (Methods, Image processing
subsection). For each clinical group, each specific descriptor was
compared with an age-matched clinically normal reference (see
Methods, Model evaluation and validation with real data), obtaining
an average distance-based score of disequilibrium/alteration compared
to the healthy baseline. This calculation was repeated 500 times via a
bootstrapping technique (with replacement), which improved the
robustness of the estimations and allowed us to control the stability
of the results.

Supplementary material related to this article can be found online
at http://dx.doi.org/10.1016/j.neuroimage.2017.02.058.

Next, we evaluated the competence of the MCM to reproduce the
observed EMCI, LMCI and LOAD multimodal imaging and cognitive
alteration patterns, starting from a characteristic HC state. The analysis
consisted of introducing a small pathologic alteration at the clinically
normal state, modeling the initial disease triggering event, and
evaluating the model’s accuracy to reproduce the real diseased data.
The statistical complexity of this analysis resides in the replication of
the alteration values of NfactorsNrois+1 variables (the total number of
regions for all biological factors plus one cognitive variable, i.e. 391),
guaranteeing the spatiotemporal continuity across three different
clinical states (i.e. a total of 391*3=1173 values) with a considerably
smaller number of model parameters (i.e. 37 model parameters). A
fully automated algorithm and a bootstrapping procedure were used to
identify the most-likely pathological initial condition (i.e. the perturba-
tion introduced at the clinically normal state) and to estimate the
model’s biological parameters. For estimation details, see Methods,
Model evaluation and validation with real data subsection, and Text
S2.

The results (Fig. 2a) demonstrate the MCM’s capability to explain
intermediate and advanced LOAD alterations. It explains 84.36% (P <

0.0001) of the variance in multifactorial regional abnormality patterns
across all the clinical states. Intra-imaging modalities results show also
a significant correspondence between the MCM’s outcome and the
reference data, supporting the effectiveness of this model to capture
factor-specific features during disease progression. See Videos S1-S5
for 3D illustrations of the reconstructed multifactorial dynamic altera-
tions. Also, based on the predicted relative disease progression scores
among the different LOAD clinical sub-stages (EMCI, LMCI, LOAD),
the results suggest that LOAD development occurs during a large
pathological temporal process. In a continuous disease progression
scale of [0, 1], with 0 corresponding to the initial pathological onset
and 1 to the LOAD diagnosis, EMCI and LMCI symptoms appear
around the 0.55 and 0.91 positions, respectively.

Finally, we evaluated the MCM’s predictive power on new instances
of data. For this, first we used the multifactorial alteration patterns of
the subjects at EMCI and LMCI states to predict the future trajectories
of the data, fitting the model with only these two states and projecting
the alteration pattern at the time that a hypothetical subject should
reach the LOAD stage. The results (Fig. 3a) confirm a strong predictive
accuracy, explaining 74.83% (P < 0.0001) of LOAD’s characteristic
multifactorial variance. Also, we tested the model’s capacity to predict
intermediary stages of disease progression, training it with the subjects
at EMCI and LOAD states and predicting the characteristic LMCI
alteration patterns. We observed again a strong predictive power
(Fig. 3b), with the MCM explaining 84.50% (P < 0.0001) of the
observed variance for subjects diagnosed as LMCI. To conclude, we
evaluated the model’s capacity to predict the past trajectories of the
data, fitting the model with the subjects at the LMCI and LOAD states
and predicting (via backward integration) the multifactorial alteration
patterns for the EMCI subjects. In line with previous results, the MCM
significantly explained the alteration data observed for the EMCI
subjects (Fig. 3c), explaining around 52% (P < 0.0001) of its total
variance. All together, these findings (Figs. 3a-c) suggest that the
proposed MCM may be a precise diagnostic tool of future brain
disorganization and cognitive properties, which can contribute to
clarify early and intermediate processes associated to disease progres-
sion. In addition, even when our analyses are based on a population-
based sample, these results support the spatiotemporal continuity of
the EMCI, LMCI and LOAD stages.

Identifying potential triggering events in LOAD
Vascular dysregulation, Aβ toxicity, metabolic impairment, neuro-

nal hyperactivity, and accelerated tissue neurodegeneration are among

Fig. 2. Reconstruction and prediction of the multifactorial alteration patterns in LOAD progression. Estimated vs. observed values for EMCI, LMCI and LOAD, starting from a HC state.
Each point represents a brain region; colors correspond to different imaging modalities. See also Videos S1–S5.
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the basic mechanisms of the most consistent/polemic hypotheses of
LOAD, which are still the subject of continuing scientific debate
(Iturria-Medina et al., 2016). It is still unknown which of these or
other pathological factors may trigger the disease process, as well as
how the multifactorial pathological signals propagate concurrently
from the initial affected regions to connected brain areas. The
introduced MCM model allowed us to evaluate quantitatively different
cascade hypotheses by the data-driven identification of the brain areas
where the disease starts and the specific associated factor(s) that
become abnormal. In practical terms, every time the model is evaluated
it starts from an initial non-zero condition S t( )0 (see Methods). This is
equivalent to introducing a perturbation in the defined brain system,
assumed to be until that time in a steady state equilibrium, with the
subsequent purpose of predicting any future time point by using the
model’s analytic formulations (expressions (5) and (13)). Usually, this
perturbation tends to be small in magnitude (i.e. with a few regions/
factors presenting non-zero values), reflecting the fact that neurode-
generation constitutes a long-term process, starting years before the
brain’s multifactorial alterations and the associated clinical symptoms
are detectable with current techniques. For the hypothetical case of
studying brain concussion effects, the initial perturbation should not be
necessarily small, but proportional to the received impact. For obtain-
ing a plausible initial condition and optimizing the model’s biological
parameters, we used a fully automated algorithm (Text S2), estimating
the most-likely factors/regions and parameters that better explain the
multivariate alteration patterns observed in the data. The estimation
included an intrinsic cross-validation, generating 10 training/test
disjoint folds, which allowed us to obtain the initial condition that

maximized the predictive power of the model. In addition, a boot-
strapping procedure, generating 500 repetitions with replacement, was
used to characterize the biological and methodological stability of the
results. Subsequently, for each of the five biological factors considered,
we obtained the probability of being the initial macroscopic triggering
event in LOAD. This probability was calculated as the relative number
of times, across all the bootstrapping repetitions, that a given factor
was identified as the initial pathological event (see Most-likely disease
triggering events and regional epicenters subsubsection, expressions
(15) and (16), Methods). Similarly, for each brain region, we computed
its probability to be a disease spatial epicenter (see expressions (17)
and (18), Methods).

Comparing the five factors considered, we observed a significant
predominance of the vascular and functional dysregulation compo-
nents as the most-likely initial pathological events (Fig. 4a). The
vascular factor was automatically identified as the triggering LOAD
cause for 58.66% of all the model evaluations/repetitions. It was
followed, as possible initial pathological event, by functional dysregula-
tion (40.58%), glucose metabolism impairment (0.32%), Aβ deposi-
tion/propagation (0.21%) and structural degeneration (0.21%). In
addition, the model identified the left hippocampus, left and right
entorhinal cortex, left putamen, left temporal regions and the right
hippocampus as the most-likely regional disease epicenters (Fig. 4b).
These regions have been historically associated with the genesis of
LOAD, being among the earliest areas targeted by the disease (Braak
and Del Tredici, 2015; Braak, 1991; Khan et al., 2014). See Discussion
section for subsequent analysis/interpretation.

Fig. 3. Prediction on new instances of data (cross-validation analysis). a) Predicted vs. observed LOAD alteration values, training the model only with EMCI and LMCI states. b)
Predicted vs. observed LMCI alteration values, training only with EMCI and LOAD states. c) Predicted vs. observed EMCI alteration values, training only with LMCI and LOAD states.

Fig. 4. Most-likely causal epicenters for LOAD. a) Factor-specific probability for triggering LOAD. b) Multifactorial regional relevance on disease onset. Regions were sorted according
to their total estimated participation probability on the disease onset. Regions with zero participation probability are not included.
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Characterizing direct factor-factor interactions and intra-brain
propagation properties

As mentioned, the direct coupling among multiple biological factors
is a key feature of the brain, both in health and disease (Andreone et al.,
2015; Bero et al., 2011; Iturria-Medina and Evans, 2015; Qosa et al.,
2014; Readnower et al., 2011; Šišková et al., 2014). The identification
of the triggering events associated to a given disorder is not enough for
understanding its progression, but it is also crucial to identify the
underlying complex interacting mechanisms. Here, we used the MCM
to estimate and characterize the direct factor-factor associations
characteristic of the whole HC to LOAD transition. The relative
factor-factor influence metric allowed us to quantify the percent of
regional changes in a given biological factor that are caused by the
direct influence of any other factor (see Interpreting factor-factor
direct interactions and alteration spread subsection, Methods).

Fig. 5a-b illustrate the obtained population-based direct associa-
tions (see also Table S2 for obtained values). The results suggest that
the vascular supply has a strong positive impact on glucose metabolism
and itself, explaining around 10.66% and 14.39% of the observed
alterations in these factors, respectively. On the contrary, and consis-
tently with the fact that vascular dysregulation modulates Aß clearance
(Qosa et al., 2014), the results support a negative impact of vascular
dysregulation on Aβ deposition (−3.21%). In a feedback mechanism,
we also observed a negative impact of Aβ accumulation on vascular

integrity (-5.88%), in agreement with the experimental evidence
suggesting that Aβ induces morphological and architectural vasculature
changes, resulting in altered CBF (Meyer et al., 2008). In addition, Aβ
burden influences negatively gray matter density (-4.65%) and in-
creases functional activity at rest (4.99%, i.e. more Aβ binding implying
an increase in functional hyperactivity and vice versa, as reported by
Buckner et al. (2009)). Consistently, functional activity dysregulation
presented a strong direct impact on Aβ deposition (25.82%), as
suggested by Yuan and Grutzendler (2016). The results suggest also a
strong functional self-loop (25.87%), being the functional alterations at
rest mostly explained by intrinsic functional mechanisms and the grey
matter density changes (-13.77%). The latter interaction is in line with
the fact that neuronal structural degeneration can trigger functional
hyperexcitability and associated network dysfunctions (Šišková et al.,
2014). Glucose metabolism presents the strongest of all the analyzed
direct interactions, negatively impacting the vascular properties
(-40%). As proposed in the Discussion section, this strong negative
link may be reflecting a crucial compensatory mechanism (i.e. the
increasing failing in glucose metabolism, characteristic of LOAD
progression, may provoke an increasing and futile demand of blood
supply, in order to get more and more glucose, which paradoxically is
less and less metabolized as the disease progresses). As expected, we
observed an strong positive link also among glucose metabolism and
grey matter density (28.30%). The energy production impairment can
directly affect the neuronal/glial demands, conducing to cell dysfunc-

Fig. 5. Direct interactions associated to LOAD progression (population-based results). a) Relative factor-factor influence matrix. Element (n,m) reflects the percent of regional changes
in the factor m that are caused by the direct influence of the factor n. See also Table S2 for obtained values. b) Associated causal diagram. Red and blue links correspond to positive and
negative direct relations, respectively. c) Relative incoming influences. d) Relative outgoing influences.
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tion, injury, and death (Demetrius and Driver, 2013).
Next, we analyzed how much each specific biological factor is

directly influenced by the others. For this we calculated the relative
incoming influences (Fig. 5c), which reflects the percent of the regional
changes in each factor that is caused by the direct influences of all other
considered biological factors, excluding self-effects (see Interpreting
factor-factor direct interactions and alteration spread subsection,
Methods). The results suggest that the vascular component is the most
influenced factor, with around 80% of its alterations directly caused by
multifactorial effects. In particular, intra-brain vascular changes are
strongly modulated by glucose metabolism and structural alterations
(40% and 32%, respectively). The high incoming connectivity degree of
the vascular system could be making it particularly vulnerable to
pathologic alterations (see Discussion section). Aβ was identified as
the second most influenced biological factor, with around 58% of its
alterations directly caused by multifactorial effects. Functional hyper-
activity and glucose metabolism dysregulation presented the strongest
impacts on Aβ, explaining around 25% and 15% of the observed Aβ
increase, respectively. As debated in the Discussion section, the
observed high levels of direct influences on vascular and Aβ properties
may be reflecting the high vulnerability and susceptibility of these
biological factors, which could explain why they have been historically
reported as very early pathological events during LOAD progression.

Complementary to the previous analysis, by means of the relative
outcoming influence measure (see Interpreting factor-factor direct
interactions and alteration spread subsection, Methods), we quanti-
fied the percent of the regional changes in all the considered biological
factors that are caused by the direct influence of each specific biological
factor. Our results (Fig. 5d), based on the five biological factors
considered, suggest that once that the initial triggering events occurs,
the provoked glucose metabolism impairment becomes the most
directly influential factor. It has a strong influence on the other four
considered factors, particularly on the vascular and structural compo-
nents. Structural degeneration is the second most influential factor,
also with a notable impact on vascular flow (31.69%). See the
Discussion section for further interpretation.

In addition to factor-factor interactions, the propagation of factor-
specific alterations is thought to be a relevant mechanism on disease
progression (Cabral et al., 2012; Friston et al., 2014; Iturria-Medina
et al., 2014; Iturria-Medina and Evans, 2015; Sanz Leon et al., 2013).
Fig. 6a-b present the average vascular and anatomical connectomes
reconstructed in this study, which constituted the main physical
substrates through which the simulated factor-specific alterations
propagated. We observed that the vascular network presents a con-
siderably higher presence of inter-hemispheric connections than the
structural network. Despite this difference, a Mantel test with permu-

Fig. 6. Multifactorial intra-brain propagation mechanisms in LOAD. a) Reconstructed vascular connectome. b) Reconstructed anatomical connectome. Both a) and b) correspond to the
averages across all the clinical groups. A significant similarity between both networks was confirmed by a Mantel test with permutations (R=0.58, P < 0.0001). c) Relative spreading
(Diff ; see Methods), reflecting the percent of the regional changes in each factor that are caused by the factor’s spreading through the brain’s physical connections. d) Fraction of the

aberrant propagation in (c) that spread through the vascular or the anatomical networks, indicated by blue or light gray bars, respectively. For complete regions names, see Table S3.
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tations confirmed the significant similarity among both networks
(R=0.58, P < 0.0001). This similarity might be explained by the fact
that during the initial neurodevelopmental processes, axon-guidance
cues mediate the navigation of blood vessels along predestined tracks
(Zacchigna et al., 2008), whereas angiogenic vascular endothelial
growth factor regulates the migration of various neuron types to their
final destination (Schwarz and et al., 2004; Zacchigna et al., 2008).
Next, we evaluated the relative spreading of each factor, which reflects
the percent of changes in a given factor that are not caused by local
multifactorial interactions but by interregional spreading through
physical connections. Among the five biological factors, metabolic
and functional impairment presented the highest relative propagation
tendencies (Fig. 6c), which propagation effects explaining around a
70% and 50% of the changes in these factors. As analyzed in the
Discussion section, these findings may be associated to cortical
depression spreading (CSD) and hyperactivity dispersion effects, which
are key processes in neurodegeneration (Chang et al., 2013; de Haan
et al., 2012; Mergenthaler et al., 2013). We also observed a strong
propagation tendency of Aβ and structural alterations, which may be
reflecting prion-like mechanisms (Brundin et al., 2010; Frost and
Diamond, 2010) and axonal degeneration effects (Lingor et al., 2012).
In addition, according to the results, while glucose metabolic dysregu-
lations, Aβ and structural alterations tend to propagate following the
route of structural connections (Fig. 6d), functional and vascular
impairments may propagate mostly by vascular connections.

Identifying optimum therapeutic strategies for stopping and
reversing LOAD progression

The ultimate goal of an effective therapeutic strategy is to prevent
and/or reverse brain multifactorial abnormalities and undesired
symptoms associated with disease progression/severity. In the specific
case of LOAD, and other dementias, this goal translates into stopping,
and ideally reversing, cognitive deterioration, which also guarantees a
normal multifactorial reorganization of the brain’s properties. In terms
of control theory (Kalman, 1963; Klickstein et al., 2016; Liu et al.,
2011), an output control strategy (Methods, Eq. (6)) applied to the
multifactorial causal network obtained here can help to identify the
optimum therapeutic strategy to modify the individual cognitive/
behavioral state, without necessarily restoring all the affected brain
properties. On the other hand, a full control strategy (Methods, Eq.
(8)) can focus on restoring to clinically normal ranges all the
considered biological properties, consequently influencing the cogni-
tive/behavioral output. Motivated by this, here we aimed to: i)
investigate the feasibility of an output control vs a full control
therapeutic strategy to effectively control LOAD progression, and ii)
for each strategy, to identify the most practical LOAD intervention,
considering either all possible single-factor or combinatorial treat-
ments.

For each considered biological factor or combination of factors (up
to a maximum of five), we estimated the theoretical optimum input
signal and corresponding cost-energy to conduce the cognitive state or
the brain’s state space (Fig. 1b) from a hypothetical LOAD state to a HC
clinical state (see Methods). Fig. 7 shows the controlled brain state
space and cognitive trajectories, for both the output control (Fig. 7a)
and the full control (Fig. 7b) strategies. Interestingly, we observed that
both controlling strategies conduce to the recovering of the cognitive
state at the POST-T point, suggesting that with an appropriate
treatment it is possible to stop and reverse LOAD’s cognitive severity.
However, although an output control strategy (Fig. 7a) was conducive
to cognitive improvement, it is far from controlling the regional
alterations observed in all the intra-brain biological factors, which in
fact will continue growing with time. As commented in the Discussion
section (Applications on the design and evaluation of therapeutic
interventions subsection), this finding suggests that, although exten-
sively practiced in the pharmaceutical and clinical fields, a LOAD

therapy selected uniquely because of its capacity to restore cognition
(or decline/stops its deterioration) may still be conducing to abnormal
brain states, characterized by other unstopped or newly generated (e.g.
secondary) effects. On the contrary, a full control strategy (Fig. 7b) can
ideally conduce to both the recuperation of cognition and the normal-
ization of the brain’s multifactorial properties, although this may be at
the expense of increasing the required cost-energy levels (Fig. 8a-b).
See Videos S1-S5 for 3D representations of the reconstructed multi-
factorial dynamic alterations.

The control cost-energy is a theoretical measure of deformation,
reflecting how much the system must be altered to reach a desired final
state (see Methods). In practical terms, the more expensive a control
intervention, the more difficult will be to implement. It will require the
input of therapeutic signals with an extremely strong biological impact,
which will be difficult to achieve and could have strong undesired
secondary effects. Here, when we analyzed the theoretical ordering in
cost-energy requirements for all possible factors-specific interventions,
we observed considerably lower cost-energy values for combinatorial
than for single-target treatments (Fig. 8a-b). In particular, for the full
control strategy, our results suggest that the combination of the five
biological factors considered would provide an efficient and effective
treatment to reverse LOAD effects, ideally conducing to a clinically
normal state. Interestingly, for both control strategies, treatments
targeting only the Aβ propagation/deposition required high amounts
of interventional energy, and consequently would require a large
application time to achieve a positive therapeutic impact (see also
Fig. S1). Finally, we repeated the previous controllability analyses for
the hypothetical case in which it is only desired to stop the disease’s
progression, i.e. halting memory deterioration and the increase in
multifactorial brain alterations, without necessarily reversing the

Fig. 7. Controlled brain and cognitive trajectories for a hypothetic HC to LOAD to HC
transition. a) Effects of using an output control strategy, with the unique goal to stop/
reverse the cognitive deterioration. b) Effects of using a full control strategy, where the
overall goal is to normalize the brain’s multifactorial properties, indirectly influencing the
cognitive state. For each case, results correspond to the minimum cost-energy strategy
identified across all possible factor-specific treatments (see Fig. 6a-b). Each line
represents the alteration level of a brain region/factor (zero value implying normal
equilibrium), with the exception of the cognitive variable (MMSE, green line), which is at
its original scale. For visualization purposes, in (a) and (b) the cognitive variable was
rescaled to the range [10-20]. See also Videos S1–S5.
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disease’s pathological effects. Fig. S2 shows the theoretical ordering
obtained in cost-energy requirements for stopping the pathological
progression at the EMCI state. We observed equivalent results, i.e. a
more consistent result of a full control strategy over an output control
strategy, with a considerable reduction of post-treatment effects, and
considerably lower cost-energy values for combinatorial than for
single-target interventions.

See Discussion section (Applications on the design and evaluation
of therapeutic interventions subsection) for further analysis/interpre-
tation.

Discussion

In this study we sought to solve three major challenges of current
neurological research: i) no characterization of direct multifactorial
biological interactions, ii) no consideration of the concurrent spreading
of multiple pathological effects across physical brain networks, and iii)
an inability to predict in advance the effects of multifactorial interven-
tional strategies. We overcome these methodological issues by means
of a multifactorial causal model of brain (dis)organization and cogni-
tion. This, in addition to clarifying disease-specific pathological me-
chanisms, allows the evaluation of the biological feasibility of single-
target or combinatorial therapies. Applied to the study of LOAD
progression, our model offers for the first time an integrative causal
description of this disorder and, remarkably, quantitative guidelines for
stopping/reversing LOAD-associated multifactorial/cognitive dete-
rioration.

Towards a multifactorial interpretation of brain disorders

Recently, we showed the importance of considering large amounts
of multiple/concomitant biomarkers instead than only a priori selected
biomarkers, as well the advantages of using data-driven instead of

observational models for the understanding of neurodegenerative
disorders (Iturria-Medina et al., 2016). However, similarly to many
other disease progression models (Donohue et al., 2014; Dukart et al.,
2013; Jack et al., 2013; Young et al., 2014), our previous analysis was
still based on changes in magnitude of the different biological factors,
as a measure of factor relevance on the disease. We highlighted,
although without solving it, the issue that small initial alterations in
specific biological factors can cause large alterations in other inter-
connected factors (Iturria-Medina et al., 2016). In this sense, only
causal analyses can potentially lead us to a more integrated under-
standing of pathological progression, clarifying the intrinsic brain
multifactorial pathological interactions that take place at different
spatiotemporal scales. The MCM introduced here attempts to address
this central point. Notice that causality is intrinsic in the differential
equations that define this model. Similarly to previous causal models
(Friston et al., 2014; Stephan et al., 2010; Valdes-sosa et al., 2011b),
but now going beyond the unifactor interaction/spreading, the MCM
equations describe: (i) how the present state of a given biological factor,
at a given brain region, causes new fluctuations in other factors or itself
at the same region or at a different brain region, via multifactorial local
interactions or by spreading through brain connections, and (ii) how
the system’s dynamic may change by the influence of external inputs
(e.g. cognitive/sensory stimulus, therapeutic interventions or environ-
mental influences). By estimating the most-likely initial triggering
causal effects and the direct interactions weights among pairs of
multiple relevant biological factors, it would then be possible to recover
the multifactorial chronological stages that lead to the outcome of a
complex disease. This concept/method might have profound implica-
tions on the ways in which we study brain disorders, i.e. focusing on the
discovery and interpretation of multifactorial causal mechanisms
instead of in the traditional observation of magnitude changes.

In particular, our results suggest that a vascular disequilibrium is
the most-likely macroscopic triggering event leading to LOAD devel-

Fig. 8. Optimum cost-energies of hypothetical LOAD therapeutic strategies. a) Output control strategy and b) full control strategy costs. Single-target and combinatorial (up to a
maximum of five target factors) therapies were sorted from minimum to maximum energy required to reverse disease progression, from an advanced LOAD state to a normal HC state.
Notice that, for both strategies, targeting only Aβ is among the most biologically expensive alternatives (see also Figs. S1–S2).
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opment (Fig. 4). This finding led to a crucial question: what makes the
vascular system particularly vulnerable at the point of being a very
early pathologic event? When analyzing the factor-factor links that
define the complex dynamic of the brain system during LOAD
progression, we found that the vascular system is the most influenced
component by the other considered biological factors (Fig. 5c).
According to our data/results, around 80% of the observed vascular
alterations may be explained by local multifactorial interactions. This
may reflect the continuous high vascular vulnerability to fluctuations in
other factors. Consequently, the lifetime convergence of multifactorial
fluctuations on the vascular system may make it particularly fragile,
which might explain why it is a potential early pathologic event on
dementia progression. Interestingly, the fact that other (i.e. non-
vascular) factors have a non-zero probability to start/trigger the disease
process (Fig. 4a) might imply that, although less likely, different
multifactorial alterations can lead to the disease’s observed alteration
patterns/symptoms. We attribute this possibility to the existence of
factor-factor causal mechanisms (see Fig. 5 and next paragraph). Once
a given initial alteration or a combination of them occurs at the
identified most-likely epicenter regions (Fig. 4), the brain’s intrinsic/
invariant factor-factor causal mechanisms and interregional spreading
capacity guarantee that this alteration will eventually impact the other
biological factors and regions, initiating a pathological cascade of
events that under particular conditions (e.g. genetic, life style, envir-
onment) may conduce to LOAD. It is, however, essential to consider
that the initial causal/triggering disease factor (or combination of
factors) may not be necessarily be detected by current imaging/
statistical techniques as a “significant” abnormality. The proposed
MCM and its associated analysis/results are incompatible with the
traditional binary/dichotomized classification among “negative” or
“positive” subjects with regard a given pathologic biomarker (see
Jack et al., 2016, 2015). Such “negative” vs “positive” separation
ignores the fact that small, scarcely statistically detectable, changes in
a given biological factor can have strong temporal impacts on disease
progression, affecting in time other brain factors, which could reach
accentuated/notable magnitude changes. Consequently, the traditional
binary classification procedures could have been leading to wrong
causal biological interpretations, suggesting for example that a given
pathological condition (e.g. Aβ accumulation/propagation) appears/
acts negatively before others just because it is more readily statistically
detectable (Jack et al., 2016, 2015).

However, despite the relevance of identifying potential initial
pathologic events, the finding of multiple consistent factor-factor
interactions evidences the indispensable role of complex multifactorial
interactions on disease development. An interesting example is the
futile increase in CBF that a glucose metabolic dysfunction may induce.
Our results (Fig. 5a-b and Table S2) suggest that alterations in glucose
metabolism have a strong impact on vascular properties, explaining
around -40% of the changes on it. We attribute the negative link to a
compensatory mechanism: the increasing failing in glucose metabo-
lism, characteristic of LOAD progression, may provoke an increasing
demand of blood supply, in order to obtain more glucose. Due to the
metabolic dysfunction, the arriving glucose is less used with disease
progression, making futile the biological efforts to guarantee a higher
CBF, in a continuous aberrant cycle. We also observed an strong
positive link among glucose metabolism and grey matter density, in
line with the fact that the energy production impairment can directly
affect the neuronal/glial demands, conducing to cell dysfunction, injury
and death (Demetrius and Driver, 2013). As expected, we observed a
negative impact of vascular dysregulation on Aβ deposition, consistent
with the fact that vascular dysregulation modulates Aß clearance (Qosa
et al., 2014). At the same time, Aβ accumulation presented a negative
impact on vascular integrity, which is in line with the experimental
evidence suggesting that Aβ induces morphological and architectural
vasculature changes (Meyer et al., 2008). In line with previous studies,
the results suggest that Aβ burden and functional activity at rest

modulate directly each other (Buckner et al., 2009; de Haan et al.,
2012; Yuan and Grutzendler, 2016), with more Aß accumulation
during disease progression associated to hyperactivity increase, and
vice versa. We also observed a strong impact of grey matter density
alterations on functional activity, in agreement with the experimental
evidence supporting that neuronal structural degeneration can trigger
functional hyperexcitability and associated network dysfunction
(Šišková et al., 2014). Factor-factor interactions are concurrent with
the intra-brain spreading of factor-specific alteration effects. In line
with the general point of view, pathologic changes appearing in the
initial epicenter regions (Fig. 4b) may propagate to other regions,
spreading the disease via physical connections (Fig. 6a-b). However,
our results (Fig. 6c) suggest that, in addition to the conventional
functional and Aß changes propagation (Brundin et al., 2010; de Haan
et al., 2012; Frost and Diamond, 2010), other biological factors may
propagate their pathologic effects also to distant brain regions. Glucose
metabolic impairment and structural degeneration presented high
interregional propagation effects, with CSD (Chang et al., 2013;
Mergenthaler et al., 2013) and axonal degeneration (Lingor et al.,
2012) being potential underlying mechanisms, respectively. Although
needing further investigation, in general these multifactorial propaga-
tion results may be evidencing the methodological importance of
considering other intra-brain disease spreading mechanisms associated
to LOAD, beyond the classically studied functional and Aß dispersions.

Altogether, our results suggest that LOAD it is not caused by a
unique dominant biological factor (e.g. vascular dysregulation, Aβ, or
metabolic dysfunction, etc.) but by the complex interplay among
multiple relevant factors, which interact continuously across the life-
time, from before the initial pathologic event to the final/advance
disease stages. We believe that this characteristic is not unique of
LOAD, but a major attribute of multiple brain disorders. Subsequent
studies, from our or other groups, should explore the multifactorial
causal attribute of prevalent brain diseases. In order to help achieve
this goal, we anticipate that the used programming source code and
implementation experience will be shared relatively soon, with the
additional goal of promoting/supporting open science.

Applications on the design and evaluation of therapeutic interventions

An essential application of considering multifactorial direct inter-
actions and their impact on cognition is the possibility of predicting the
cascade of effects that a given external input may cause in the brain. In
this sense, generative quantitative models constitute a natural in silico
scenario to design and evaluate the effects of treatments. Here we
quantified, for the first time to the best of our knowledge, the impact
that multiple combinatorial or single-target interventions may have on
the brain and its immediate output, cognition. The principles of control
theory (Kalman, 1963; Klickstein et al., 2016; Liu et al., 2011), in
combination with the formulated MCM, allow us to evaluate not only
the theoretical impact of each possible therapeutic strategy but also to
quantify its feasibility, in terms of control energy required to direct the
system to the desired state (e.g. a clinically normal state, in the
neurological context). For each hypothetical intervention, the obtained
control energy can be interpreted as the accumulation of deformation
(in the same scale that the state space variables) that is necessary to
apply to the system in order to conduce it to the desired state. Although
these values have been calculated here for hypothetical interventions,
mathematically it is straightforward to calculate the real effects that a
given therapy may have over the brain and its immediate outputs,
cognition/behaviour. For characterizing an actual intervention of
interest, it would be only necessary to have longitudinal data associated
to it, including also the precise information about the time points of the
intervention (for defining a scaled input signal, u(t), see expression (5))
and at least some a priori knowledge of the brain regions that should be
directly affected (for defining the input matrix, B, see expression (5)).
With a few mathematical operations, it would be then possible to
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identify a direct function, translating treatment characteristics to brain
and cognitive/clinical impacts. In consequence, the introduced meth-
odology can be particularly useful for comparing alternative interven-
tions (Figs. 7, 8 and Fig. S1–S2) and identifying optimum pharmaco-
logical strategies to prevent and/or reverse disease progression.

Although still requiring further exploration at the individual level
(see Limitations and future work subsection), the population-based
results obtained here motivate two main comments. First, we observed
that although an output control strategy (i.e. the basic goal is to modify
the individual cognitive/behavioral state, without restoring the affected
brain properties; Fig. 7a) was conducive to cognitive improvement, it is
far from controlling the regional alterations observed in all the intra-
brain biological factors. Regularly practiced in the pharmaceutical and
clinical fields, this strategy is strongly susceptible to the appearance of
negative secondary effects. After the intervention, the remaining brain
alterations can continue interacting locally, via factor-factor direct
interactions, and can also continue to spread to other brain regions,
where other factor-factor interactions can take place. A full control
strategy (i.e. the basic goal is to modify/restore the affected brain
properties; see Fig. 7b and Videos S1-S5) can ideally conduce to both
the normalization of the brain’s multifactorial properties and conse-
quently to the recuperation of cognition. However, it is not always clear
what can be classified as a post-treatment remaining alteration or if it
could trigger a negative secondary cascade. As defined in the Methods
section, the MCM proposes to characterize each brain variable accord-
ing to its alteration/disequilibrium level or dissimilarity/distance to an
initial pathology-free state. Assuming an endpoint state, which could be
the same initial pathology-free state or other proposed by the clinician,
the model can be used to identify the optimum theoretical intervention
to reach such state. One possibility may be to conduce the individual
brain to reach similar properties before progressing on the disease, but
usually the associated data is not available, particularly for extended
neurodegenerative processes. Alternatively, the values observed for
demographically-matched clinically normal subjects can be assumed as
endpoints. But it is still under scientific debate what is ideal or clinically
normal, and that may even change from person to person. In this sense,
the MCM could also contribute to the evaluation of the individual
impact of multiple possible endpoints, even before a given treatment is
designed and applied. The simulation of future trajectories, beyond
each candidate endpoint, may be useful to clarify if an associated
(optimum) intervention would be eventually conducing to an accep-
table or to an undesired cognitively/clinically condition. Second, we
observed considerably lower cost-energy values for combinatorial than
for single-target interventions (Fig. 8a-b). This supports the previously
postulated advantage of using combinatorial over single-target treat-
ments (Sun et al., 2013). According to our results, the combination of
multiple biological factors as targets would provide an efficient and
effective treatment to reverse LOAD effects, ideally conducing to a
clinically normal state. Treatments targeting only the Aβ propagation/
deposition required high amounts of interventional energy (see Fig.
S1), which might explain why recent one-target Aβ based therapies
have failed to improve clinical outcomes in LOAD (Doody et al., 2014;
Salloway et al., 2014). We observed similar results for the hypothetical
case in which it is only desired to stop the disease’s progression (see
Fig. S2), i.e. halting memory deterioration and the increase in multi-
factorial brain alterations, without necessarily reversing the disease’s
pathological effects. The latter indicates that similar therapeutic
principles are valid for preventing or reversing the disease.

In summary, we believe that the proposed model may be particu-
larly useful for: i) comparing multiple possible intervention strategies,
in terms of effectiveness and biological costs, ii) defining feasible
endpoints, designed also to avoid negative secondary brain effects, and
iii) evaluating additional practical information associated to treatments
decisions (e.g. technical difficulties and/or associated economic costs),
which would contribute to obtaining a realistic tradeoff among
theoretical predictions and relevant practical factors. In line with the

latter application, it is important to keep in mind that any result based
on this methodology should be considered in combination with the
practical clinical feasibility associated with each possible treatment. For
example, targeting only four of the considered factors, e.g. excluding
grey matter density as a target, requires more control energy than
targeting the five considered factors together (Fig. 8a-b). But the
former intervention may be still more practical in clinical terms, due
to the therapeutic difficulty in promoting grey matter density increase
(or neurogenesis) across the whole brain. Thus, if we expect this
controlling methodology and others similar (Betzel et al., 2016; Freund
et al., 2016; Muldoon et al., 2016) to represent a turning point for the
assisted design of disease-specific therapeutics, it will be critical to
establish a strong compromise among theoretical predictions and
clinical feasibility. Potentially, incorporating a priori penalty weights
on the cost-energy function (expression (9)), may be useful for
integrating the theoretical estimations with the available information
about technical and/or economic difficulties for implementing a given
therapy. These methodological extensions will be among the main
focuses of our subsequent studies.

Limitations and future work

Brain modeling techniques strongly depend on how precisely the
considered descriptors reflect specific biological/pathophysiological
processes. The biological parameters estimated with the MCM are
not exempt from this dependency. In particular, the data used in this
study present some key limitations. First, although the MCM has been
explicitly formulated to consider the case of individual trajectories, the
lack of subjects with all imaging modalities required us to fit the data
on all samples, explaining and/or predicting population-based disease
stage patterns. Consequently, all the results/conclusions presented
here are only representative of the average tendency in the ADNI
population, and do not necessarily explain all possible individual
mechanisms. However, this optimization limitation does not alter the
causality nature of the model, intrinsic in the differential equations that
define it. The fact that multiple of the obtained factor-factor relation-
ships are in line with previously reported interactions, based on
experimental analyses, supports the biological validity of our popula-
tion-based findings. Importantly, we are already extending the model
formulation to deal with missing data, predicting the specific missing
modalities, which will allow us to fit individual datasets and analyze/
report consistencies and dissimilarities between population-based and
individual-based results. The extended formulation, and associated
individual-based results, will be the main focus of a subsequent
publication. Second, and for the same reason, continuous changes in
brain connectivity were approximated by inter-group changes. Despite
this, notice that the proposed model is not restricted to linear
dynamics. The causal multifactorial network A(t) can change dynami-
cally, depending on the alterations of the structural and vascular
connectomes. In the case of presenting continuous connectivity in-
formation (e.g. for longitudinal individual datasets), expressions (4)
and (5) can be accurately evaluated using advanced integration
methods (Carbonell et al., 2008), while the corresponding controll-
ability analysis can be performed using non-linear approaches (Wang
et al., 2016). Third, due to the lack of young clinically normal subjects
and to large longitudinal datasets, it is difficult to define a reference
healthy pattern. We used age and gender-matched clinically normal
subjects, which could have already non-pathological aging affectations,
and/or also an intrinsic predisposition to not develop LOAD. Thus, we
may be comparing the unhealthy subjects with “special” individuals.
Consequently, this may be affecting the precision of the abnormality/
disequilibrium measures. Fourth, we used approximate methods to
reconstruct vascular and anatomical brain connectomes. Fig. 6 illus-
trates the (dis)similarities among both obtained connectomes. Further
formulations/analyses should explore the possibility of making the
MCM robust to the choice of connectomes reconstruction algorithms,
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in order to reduce this potential source of bias (see (Huynh-Thu et al.,
2010; Iturria-Medina, 2013)). Fifth, our main analyses were based on a
specific brain parcellation scheme (Klein and Tourville, 2012).
Although this parcellation improved the consistency and accuracy of
labeling human cortical areas, the use of different parcellation schemes
can impact differently brain network reconstruction results (Zalesky
et al., 2010), and could potentially affect also the quantification of the
multimodal regional patterns. Notably, in a preliminary analysis, we
obtained consistent results using a different parcellation (AAL atlas),
considering 90 cortical and subcortical areas covering all the brain´s
gray matter (Tzourio-Mazoyer et al., 2002). For the AAL parcellation,
the results suggest once more that a vascular dysregulation may be the
most-likely initial pathologic event leading to LOAD. The vascular
factor was automatically identified as the triggering LOAD cause for
around the 66% of all the model evaluations/repetitions, and was
followed by functional dysregulation (27%) and amyloid deposition
(7%). We also observed a significant similarity among the obtained
multifactorial interaction measures for both parcellations (Pearson
correlation: R=0.7, P < 0.0001). We are already extending this analysis
by performing a broad model exploration/validation using multiple
parcellation schemes, defined at different spatial scales, with the
ultimate goal of making the MCM-based conclusions robust to the
choice of parcellation. Sixth, for the sake of simplicity on model
formulation and evaluation, in this study we used a linear function
for modeling the multifactorial regional impacts on cognition. In
principle, any other function could be used, depending on how robustly
it can be estimated previously from the available data. When consider-
ing different function alternatives for the system’s output function, it
will be important to reach an appropriate trade-off between accuracy
and complexity. For example, although the inclusion of region-region
interactions would benefit the model’s accuracy, it would also increase
considerably the number of parameters to be estimated. This would not
be necessarily a problem if it is used a relative large sample size,
although could be needed the use of feature selection techniques. Other
alternative could be the use of kernel or radial basis functions, which
would be useful to capture non-linear effects. Seventh, here multi-
factorial brain alterations were only evaluated in the grey matter,
ignoring possible alterations within the white matter and other LOAD-
relevant areas (e.g. CSF, arachnoid and pia matter/space). The inclu-
sion of other tissues and brain areas will be on the focus of other MCM-
based separate studies, for which we will combine structural white
matter alterations (evaluated with T1, T2 FLAIR, diffusion-weighted
connectivity measurements (Iturria-Medina, 2013)), white matter
vascular integrity, CSF ventricles volume and density, extra-brain
space measurements, among others. This multivariate information
can be readily inserted into the flexible formulation of the MCM,
ideally conducing to an advance spatiotemporal description/represen-
tation of the brain’s multifactorial nature.

Data availability

All data used in this study is available at the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Author contributions

ADNI acquired the data. YIM conceived the model/study, imple-
mented the programming source code, preprocessed and analyzed the
data, and wrote the manuscript. FMC provided continuous feedback on
the model definition, source code implementation, data analysis and
the manuscript preparation/writing. FC constructed Fig. 6a-b. ACE and
RCS revised/corrected the manuscript. All authors contributed to
constructive discussions regarding the interpretation of the results.

Conflict of interest

The authors declare no competing financial interest.

Acknowledgments

We are grateful to Joshua Morse, Vladimir Hachinski, Jacob Vogel
and Mélissa Savard for their helpful comments and suggestions on the
manuscript. We are also grateful to the three anonymous reviewers for
their useful comments and suggestions. YIM is funded by a Banting
postdoctoral fellowship (Government of Canada). Data collection and
sharing for this project was funded by the Alzheimer's Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense award
number W81XWH-12-2-0012). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the follow-
ing: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.;
Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO
Ltd.; Janssen Alzheimer Immunotherapy Research & Development,
LLC.; Johnson & Johnson Pharmaceutical Research & Development
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier;
Takeda Pharmaceutical Company; and Transition Therapeutics. The
Canadian Institutes of Health Research is providing funds to support
ADNI clinical sites in Canada. Private sector contributions are facili-
tated by the Foundation for the National Institutes of Health (www.
fnih.org). The grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated by the
Alzheimer's Disease Cooperative Study at the University of California,
San Diego. ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of Southern California.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.neuroimage.2017.02.058.

References

Andreone, B.J., Lacoste, B., Gu, C., 2015. Neuronal and vascular interactions. Neurosci.
Res. 38, 25–46. http://dx.doi.org/10.1146/annurev-neuro-071714-033835.

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38,
95–113.

Bero, A.W., Yan, P., Roh, J.H., Cirrito, J.R., Stewart, F.R., Raichle, M.E., Lee, J.,
Holtzman, D.M., 2011. Neuronal Activity Regulates the Regional Vulnerability to
Amyloid- b Deposition, vol. 14, pp. 5–7. 〈http://doi.org/10.1038/nn.2801〉.

Betzel, R.F., Gu, S., Medaglia, J.D., Pasqualetti, F., Bassett, D.S., 2016. Optimally
Controlling the Human Connectome: the Role of Network Topology. pp. 1–23.

Braak, H., Del Tredici, K., 2015. The preclinical phase of the pathological process
underlying sporadic Alzheimer’s disease. Brain 138, 2814–2833. http://dx.doi.org/
10.1093/brain/awv236.

Braak, H., B.E, 1991. Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathol. 82, 239–259.

Brundin, P., Melki, R., Kopito, R., 2010. Prion-like transmission of protein aggregates in
neurodegenerative diseases. Nat. Rev. 11, 301–307.

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-
Hanna, J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical hubs revealed by intrinsic
functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s
disease. J. Neurosci. 29, 1860–1873. http://dx.doi.org/10.1523/JNEUROSCI.5062-
08.2009.

Cabral, J., Hugues, E., Kringelbach, M.L., Deco, G., 2012. Modeling the outcome of
structural disconnection on resting-state functional connectivity. Neuroimage.
http://dx.doi.org/10.1016/j.neuroimage.2012.06.007.

Carbonell, F., Jimenez, J., Pedroso, L., 2008. Computing multiple integrals involving
matrix exponentials. J. Comput. Appl. Math. 213, 300–305.

Chang, J.C., Brennan, K.C., He, D., Huang, H., Miura, R.M., Wilson, P.L., Wylie, J.J.,
2013. A mathematical model of the metabolic and perfusion effects on cortical

Y. Iturria-Medina et al. NeuroImage 152 (2017) 60–77

75

http://www.fnih.org
http://www.fnih.org
http://dx.doi.org/10.1016/j.neuroimage.2017.02.058
http://dx.doi.org/10.1146/annurev-neuro-071714-033835
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref2
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref2
http://doi.org/10.1038/nn.2801
http://dx.doi.org/10.1093/brain/awv236
http://dx.doi.org/10.1093/brain/awv236
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref4
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref4
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref5
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref5
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1016/j.neuroimage.2012.06.007
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref8
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref8


spreading depression. PLoS One 8, 1–9. http://dx.doi.org/10.1371/
journal.pone.0070469.

Chao-Gan, Y., Yu-Feng, Z., 2010. DPARSF: a MATLAB toolbox for “Pipeline” data
analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13. http://dx.doi.org/
10.3389/fnsys.2010.00013.

Chen-Plotkin, A.S., 2014. Unbiased approaches to biomarker discovery in
neurodegenerative diseases. Neuron 84, 594–607. http://dx.doi.org/10.1016/
j.neuron.2014.10.031.

Coleman, T.F., Li, Y., 1996. An interior trust region approach for nonlinear minimization
subject to bounds. SIAM J. Optim. 6, 418–445. http://dx.doi.org/10.1137/0806023.

Coleman, T.F., Li, Y., 1992. On the convergence of reflective newton methods for large-
scale nonlinear minimization subject to bounds. Math. Program., 1–36.

Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., Mcguire, P., Bullmore, E.T.,
2014. The hubs of the human connectome are generally implicated in the anatomy of
brain disorders. Brain 137, 2382–2395. http://dx.doi.org/10.1093/brain/awu132.

de Haan, W., Mott, K., van Straaten, E.C.W., Scheltens, P., Stam, C.J., 2012. Activity
dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS
Comput. Biol. 8, e1002582. http://dx.doi.org/10.1371/journal.pcbi.1002582.

Demetrius, L.A., Driver, J., 2013. Alzheimer’s as a metabolic disease. Biogerontology 14,
641–649.

Donohue, M.C., Jacqmin-Gadda, H., Le Goff, M., Thomas, R.G., Raman, R., Gamst, A.C.,
Beckett, L.A., Jack, C.R., Weiner, M.W., Dartigues, J.-F., Aisen, P.S., 2014.
Estimating long-term multivariate progression from short-term data. Alzheimer’s
Dement 10, S400–S410. http://dx.doi.org/10.1016/j.jalz.2013.10.003.

Doody, R.S., Thomas, R.G., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K.,
Raman, R., Sun, X., Aisen, P.S., Siemers, E., Liu-Seifert, H., Mohs, R., 2014. Phase 3
trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med.
370, 311–321. http://dx.doi.org/10.1056/NEJMoa1312889.

Dukart, J., Kherif, F., Mueller, K., Adaszewski, S., Schroeter, M.L., Frackowiak, R.S.J.,
Draganski, B., Neuroimaging, D., 2013. Generative FDG-PET and MRI Model of
Aging and Disease Progression in Alzheimer’s Disease, vol. 9, pp. 1–11. 〈http://doi.
org/10.1371/journal.pcbi.1002987〉.

Evans, A., 2013. Networks of anatomical covariance. Neuroimage 80, 489–504.
Evans, A., Kamber, M., Collins, D., Macdonald, D., 1994. An MRI-based probabilistic

atlas of neuroanatomy. In: Shorvon, S., Fish, D., Andermann, F., Bydder, G., Stefan,
H. (Eds.), Magnetic Resonance Scanning Epilepsy. Plenum, New York, 263–274.

Fonteijn, H.M., Modat, M., Clarkson, M.J., Barnes, J., Lehmann, M., Hobbs, N.Z.,
Scahill, R.I., Tabrizi, S.J., Ourselin, S., Fox, N.C., Alexander, D.C., 2012. An event-
based model for disease progression and its application in familial Alzheimer’s
disease and Huntington’s disease. Neuroimage, 1–10. http://dx.doi.org/10.1016/
j.neuroimage.2012.01.062.

Freund, P., Friston, K., Thompson, A.J., Stephan, K.E., Ashburner, J., Bach, D.R., Nagy,
Z., Helms, G., Draganski, B., Mohammadi, S., Schwab, M.E., Curt, A., Weiskopf, N.,
2016. Embodied neurology: an integrative framework for neurological disorders
Embodied neurology : anintegrative framework for neurological disorders. Brain
139, 1855–1861. http://dx.doi.org/10.1093/brain/aww076.

Friston, K.J., Kahan, J., Biswal, B., Razi, A., 2014. A DCM for resting state fMRI.
Neuroimage 94, 396–407. http://dx.doi.org/10.1016/j.neuroimage.2013.12.009.

Frost, B., Diamond, M.I., 2010. Prion-like mechanisms in neurodegenerative diseases.
Nat. Rev. Neurosci. 11, 155–159. http://dx.doi.org/10.1038/nrn2786.

Gao, J., Liu, Y.-Y., D’Souza, R.M., Barabási, A.-L., 2014. Target control of complex
networks. Nat. Commun. 5, 5415. http://dx.doi.org/10.1038/ncomms6415.

Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P., 2010. Inferring regulatory
networks from expression data using tree-based methods. PLoS One 5, 1–10. http://
dx.doi.org/10.1371/journal.pone.0012776.

Iadecola, C., 2004. Neurovascular regulation in the normal brain and in Alzheimer’s
disease. Nat. Rev. Neurosci. 5, 347–360.

Iturria-Medina, Y., 2013. Anatomical brain networks on the prediction of abnormal brain
states. Brain Connect., 1–41.

Iturria-Medina, Y., Canales-Rodríguez, E.J., Melie-García, L., Valdés-Hernández, P.A.,
Martínez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J.M., 2007.
Characterizing brain anatomical connections using diffusion weighted MRI and
graph theory. Neuroimage 36, 645–660. http://dx.doi.org/10.1016/
j.neuroimage.2007.02.012.

Iturria-Medina, Y., Evans, A.C., 2015. On the central role of brain connectivity in
neurodegenerative disease progression. Front. Aging Neurosci. 7, 90. http://
dx.doi.org/10.3389/fnagi.2015.00090.

Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Evans, A.C., 2014. Epidemic spreading
model to characterize misfolded proteins propagation in aging and associated
neurodegenerative disorders. PLoS Comput. Biol. 10, e1003956. http://dx.doi.org/
10.1371/journal.pcbi.1003956.

Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Mateos-Perez, J.M., Evans, A.C., ADNI,
2016. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on
multifactorial data-driven analysis. Nat. Commun. 7, 11934. http://dx.doi.org/
10.1038/ncomms11934.

Jack, C.R., Knopman, D.S., Chételat, G., Dickson, D., Fagan, A.M., Frisoni, G.B., Jagust,
W., Mormino, E.C., Villemagne, V.L., Visser, P.J., Vos, S.J.B., 2016. Suspected non-
Alzheimer disease pathophysiology — concept and controversy. Nat. Publ. Gr., 1–8.
http://dx.doi.org/10.1038/nrneurol.2015.251.

Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., Shaw,
L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., Lesnick, T.G., Pankratz, V.S., Donohue,
M.C., Trojanowski, J.Q., 2013. Tracking pathophysiological processes in Alzheimer’s
disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12,
207–216. http://dx.doi.org/10.1016/S1474-4422(12)70291-0.

Jack, C.R., Wiste, H.J., Weigand, S.D., Knopman, D.S., Mielke, M.M., Vemuri, P., Lowe,
V., Senjem, M.L., Gunter, J.L., Reyes, D., Machulda, M.M., Roberts, R., Petersen, R.

C., 2015. Different Definitions of Neurodegeneration Produce Similar Amyloid/
neurodegeneration Biomarker Group Findings, pp. 1–13. 〈http://doi.org/10.1093/
brain/awv283〉.

Jack, C.R., Jr, Knopman, D.S., Jagust, W.J., et al., 2010. Hypothetical model of dynamic
biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128.

Jagust, W., Bandy, D., Chen, K., Foster, N., Landau, S., Mathis, C., Al, E., 2010. The
Alzheimer’s disease neuroimaging initiative positron emission tomography core.
Alzheimers Dement 6, 221–229.

Kailah, T., 1980. Linear Systems. Prentice-Hall, New Jersey.
Kalman, R., 1963. Mathematical description of linear dynamical systems. J. Soc. Ind.

Appl. Math. Ser. A 1, 152–192.
Khan, U. a, Liu, L., Provenzano, F. a, Berman, D.E., Profaci, C.P., Sloan, R., Mayeux, R.,

Duff, K.E., Small, S. a, 2014. Molecular drivers and cortical spread of lateral
entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 17,
304–311. http://dx.doi.org/10.1038/nn.3606.

Klein, A., Tourville, J., 2012. 101 labeled brain images and a consistent human cortical
labeling protocol. Front. Neurosci. 6, 171. http://dx.doi.org/10.3389/
fnins.2012.00171.

Klickstein, I.S., Shirin, A., Sorrentino, F., 2016. Optimal Target Control of Complex
Networks.

Klupp, E., Förster, S., Grimmer, T., Tahmasian, M., Yakushev, I., Sorg, C., Yousefi, B.H.,
Drzezga, A., 2014. In Alzheimer’s disease, hypometabolism in low-amyloid brain
regions may be a functional consequence of pathologies in connected brain regions.
Brain Connect 4, 371–383. http://dx.doi.org/10.1089/brain.2013.0212.

Lingor, P., Koch, J.C., Tönges, L., Bähr, M., 2012. Axonal degeneration as a therapeutic
target in the CNS. Cell Tissue Res. 349, 289–311. http://dx.doi.org/10.1007/
s00441-012-1362-3.

Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L., 2011. Controllability of complex networks.
Nature 473, 167–173. http://dx.doi.org/10.1038/nature10011.

Mergenthaler, P., Lindauer, U., Dienel, G., Meisel, A., 2013. Sugar for the brain: the role
of glucose in physiological and pathological brain function. Trends Neurosci. 36,
587–597. http://dx.doi.org/10.1016/j.tins.2013.07.001.Sugar.

Meyer, E.P., Ulmann-Schuler, A., Staufenbiel, M., Krucker, T., 2008. Altered morphology
and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease.
Proc. Natl. Acad. Sci. USA 105, 3587–3592. http://dx.doi.org/10.1073/
pnas.0709788105.

Mišić, B., Betzel, R.F., Nematzadeh, A., Goñi, J., Griffa, A., Hagmann, P., Flammini, A.,
Ahn, Y.Y., Sporns, O., 2015. Cooperative and competitive spreading dynamics on the
human connectome. Neuron 86, 1518–1529. http://dx.doi.org/10.1016/
j.neuron.2015.05.035.

Monti, R.P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., Montana, G., 2014.
Estimating time-varying brain connectivity networks from functional MRI time
series. Neuroimage 103, 427–443. http://dx.doi.org/10.1016/
j.neuroimage.2014.07.033.

Muldoon, S.F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S.T., Vettel, J.M., Bassett, D.
S., 2016. Stimulation-Based Control of Dynamic Brain Networks, vol. 54.

Qosa, H., Abuasal, B.S., Romero, I.A., Weksler, B., Couraud, P.-O., Keller, J.N.,
Kaddoumi, A., 2014. Differences in Amyloid-β Clearance Across Mouse and Human
Blood–brain Barrier Models.pdf.

Raj, A., Kuceyeski, A., Weiner, M., 2012. A network diffusion model of disease
progression in dementia. Neuron 73, 1204–1215. http://dx.doi.org/10.1016/
j.neuron.2011.12.040.

Readnower, R., Sauerbeck, A., Sullivan, P., 2011. Mitochondria, Amyloid β, and
Alzheimer’s Disease.pdf. 〈http://doi.org/10.4061/2011/104545〉.

Rubinov, M., Sporns, O., 2010. NeuroImage Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. http://
dx.doi.org/10.1016/j.neuroimage.2009.10.003.

Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M.,
Honig, L.S., Porsteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik, B.,
Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, I.C., Liu, E.,
Grundman, M., Yuen, E., Black, R., Brashear, H.R., 2014. Two phase 3 trials of
bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370,
322–333. http://dx.doi.org/10.1056/NEJMoa1304839.

Sanz Leon, P., Knock, S. a, Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R.,
Jirsa, V., 2013. The Virtual Brain: a simulator of primate brain network dynamics.
Front. Neuroinform. 7, 10. http://dx.doi.org/10.3389/fninf.2013.00010.

Sanz-Leon, P., Knock, S. a, Spiegler, A., Jirsa, V.K., 2015. Mathematical framework for
large-scale brain network modelling in The Virtual Brain. Neuroimage. http://
dx.doi.org/10.1016/j.neuroimage.2015.01.002.

Schwarz, Q., et al., 2004. Vascular endothelial growth factor controls neuronal migration
and cooperates with Sema3A to pattern distinct compartments of the facial nerve.
Genes Dev. 18, 2822–2834.

Sheikh, S., Haque, E., Mir, S., 2012. Neurodegenerative diseases: multifactorial
conformational diseases and their therapeutic interventions. J. Neurodegener. Dis.
2013, 8. http://dx.doi.org/10.1155/2013/563481/.

Šišková, Z., Justus, D., Kaneko, H., Friedrichs, D., Henneberg, N., Beutel, T., Pitsch, J.,
Schoch, S., Becker, A., VonderKammer, H., Remy, S., 2014. Dendritic structural
degeneration is functionally linked to cellular hyperexcitability in a mouse model of
alzheimer’s disease. Neuron 84, 1023–1033. http://dx.doi.org/10.1016/
j.neuron.2014.10.024.

Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. A Nonparametric Method for Automatic
Correction of Intensity Nonuniformity in MRI Data, vol. 17, pp. 87–97.

Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C., 2007.
Realistically coupled neural mass models can generate EEG rhythms. Neural
Comput..

Stam, C.J., van Straaten, E.C.W., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A.,

Y. Iturria-Medina et al. NeuroImage 152 (2017) 60–77

76

http://dx.doi.org/10.1371/journal.pone.0070469
http://dx.doi.org/10.1371/journal.pone.0070469
http://dx.doi.org/10.3389/fnsys.2010.00013
http://dx.doi.org/10.3389/fnsys.2010.00013
http://dx.doi.org/10.1016/j.neuron.2014.10.031
http://dx.doi.org/10.1016/j.neuron.2014.10.031
http://dx.doi.org/10.1137/0806023
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref13
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref13
http://dx.doi.org/10.1093/brain/awu132
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref16
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref16
http://dx.doi.org/10.1016/j.jalz.2013.10.003
http://dx.doi.org/10.1056/NEJMoa1312889
http://doi.org/10.1371/journal.pcbi.1002987
http://doi.org/10.1371/journal.pcbi.1002987
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref19
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref20
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref20
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref20
http://dx.doi.org/10.1016/j.neuroimage.2012.01.062
http://dx.doi.org/10.1016/j.neuroimage.2012.01.062
http://dx.doi.org/10.1093/brain/aww076
http://dx.doi.org/10.1016/j.neuroimage.2013.12.009
http://dx.doi.org/10.1038/nrn2786
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1371/journal.pone.0012776
http://dx.doi.org/10.1371/journal.pone.0012776
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref27
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref27
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref28
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref28
http://dx.doi.org/10.1016/j.neuroimage.2007.02.012
http://dx.doi.org/10.1016/j.neuroimage.2007.02.012
http://dx.doi.org/10.3389/fnagi.2015.00090
http://dx.doi.org/10.3389/fnagi.2015.00090
http://dx.doi.org/10.1371/journal.pcbi.1003956
http://dx.doi.org/10.1371/journal.pcbi.1003956
http://dx.doi.org/10.1038/ncomms11934
http://dx.doi.org/10.1038/ncomms11934
http://dx.doi.org/10.1038/nrneurol.2015.251
http://dx.doi.org/10.1016/S1474-4422(12)70291-0
http://doi.org/10.1093/brain/awv283
http://doi.org/10.1093/brain/awv283
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref35
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref35
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref36
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref36
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref36
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref37
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref38
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref38
http://dx.doi.org/10.1038/nn.3606
http://dx.doi.org/10.3389/fnins.2012.00171
http://dx.doi.org/10.3389/fnins.2012.00171
http://dx.doi.org/10.1089/brain.2013.0212
http://dx.doi.org/10.1007/s00441-012-1362-3
http://dx.doi.org/10.1007/s00441-012-1362-3
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1016/j.tins.2013.07.001.Sugar
http://dx.doi.org/10.1073/pnas.0709788105
http://dx.doi.org/10.1073/pnas.0709788105
http://dx.doi.org/10.1016/j.neuron.2015.05.035
http://dx.doi.org/10.1016/j.neuron.2015.05.035
http://dx.doi.org/10.1016/j.neuroimage.2014.07.033
http://dx.doi.org/10.1016/j.neuroimage.2014.07.033
http://dx.doi.org/10.1016/j.neuron.2011.12.040
http://dx.doi.org/10.1016/j.neuron.2011.12.040
http://doi.org/10.4061/2011/104545
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1056/NEJMoa1304839
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.1016/j.neuroimage.2015.01.002
http://dx.doi.org/10.1016/j.neuroimage.2015.01.002
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref53
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref53
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref53
http://dx.doi.org/10.1155/2013/563481/
http://dx.doi.org/10.1016/j.neuron.2014.10.024
http://dx.doi.org/10.1016/j.neuron.2014.10.024
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref56
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref56
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref56


Meier, J., Van Mieghem, P., 2016. The relation between structural and functional
connectivity patterns in complex brain networks. Int. J. Psychophysiol. 103,
149–160. http://dx.doi.org/10.1016/j.ijpsycho.2015.02.011.

Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E.M., Daunizeau, J., Friston,
K.J., 2010. Ten simple rules for dynamic causal modeling. Neuroimage 49,
3099–3109. http://dx.doi.org/10.1016/j.neuroimage.2009.11.015.

Street, J.O., Carroll, R.J., Ruppert, D., 1988. A note on computing robust regression
estimates via iteratively reweighted least squares. Am. Stat. 42, 152–154.

Sun, X., Vilar, S., Tatonetti, N.P., 2013. High-throughput methods for combinatorial drug
discovery. Sci. Transl. Med. 5. http://dx.doi.org/10.1126/scitranslmed.3006667.

Tibshirani, R., 1996. Regression Selection and Shrinkage via the Lasso. J. R. Stat. Soc. B.
http://dx.doi.org/10.2307/2346178.

Tournier, J.D., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P., 2008.
Resolving crossing fibres using constrained spherical deconvolution: validation using
diffusion-weighted imaging phantom data. Neuroimage 42, 617–625. http://
dx.doi.org/10.1016/j.neuroimage.2008.05.002.

Trujillo-Ortiz, A., Hernandez-Walls, R., Castro-Perez, A., Barba-Rojo, K., 2006.
MOUTLIER1: Detection of Outlier in Multivariate Samples Test. A MATLAB file
[WWW Doc].

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix,
N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in
SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289. http://dx.doi.org/10.1006/nimg.2001.0978.

Valdes-sosa, P.A., Roebroeck, A., Daunizeau, J., Friston, K., 2011a. NeuroImage Effective
connectivity: influence, causality and biophysical modeling. Neuroimage, 1. http://
dx.doi.org/10.1016/j.neuroimage.2011.03.058.

Valdes-sosa, P.A., Roebroeck, A., Daunizeau, J., Friston, K., 2011b. NeuroImage Effective
connectivity: influence, causality and biophysical modeling. Neuroimage 58,
339–361. http://dx.doi.org/10.1016/j.neuroimage.2011.03.058.

van den Heuvel, M.P., Hulshoff Pol, H.E., 2010. Exploring the brain network: a review on
resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20,
519–534. http://dx.doi.org/10.1016/j.euroneuro.2010.03.008.

WHO, 2016. World Health Statistics 2016: monitoring health for the SDGs. Sustainable
Development Goals. (doi:ISBN 978 92 4 156526 4).

Wilks, S., 1966. Multivariate statistical outliers. Sankhya Ser. A 25, 407–426.
Wu, J.W., Hussaini, S.A., Bastille, I.M., Rodriguez, G.A., Mrejeru, A., Rilett, K., Sanders,

D.W., Cook, C., Fu, H., Boonen, R.A.C.M., Herman, M., Nahmani, E., Emrani, S.,
Figueroa, Y.H., Diamond, M.I., Clelland, C.L., Wray, S., Duff, K.E., 2016. Neuronal
activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci.. http://
dx.doi.org/10.1038/nn.4328.

Young, A.L., Oxtoby, N.P., Daga, P., Cash, D.M., Fox, N.C., Ourselin, S., Schott, J.M.,
Alexander, D.C., 2014. A data-driven model of biomarker changes in sporadic
Alzheimer’s disease. Brain 137, 2564–2577. http://dx.doi.org/10.1093/brain/
awu176.

Yuan, P., Grutzendler, J., 2016. Attenuation of -amyloid deposition and neurotoxicity by
chemogenetic modulation of neural activity. J. Neurosci. 36, 632–641. http://
dx.doi.org/10.1523/JNEUROSCI.2531-15.2016.

Zacchigna, S., Lambrechts, D., Carmeliet, P., 2008. Neurovascular signalling defects in
neurodegeneration. Nat. Rev. Neurosci. 9, 169–181. http://dx.doi.org/10.1038/
nrn2336.

Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T.,
2010. Whole-brain anatomical networks: does the choice of nodes matter?
Neuroimage 50, 970–983.

Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L., 2004. Regional homogeneity approach to fMRI
data analysis. Neuroimage 22, 394–400. http://dx.doi.org/10.1016/
j.neuroimage.2003.12.030.

Zlokovic, B.V., 2011. Neurovascular pathways to neurodegeneration in Alzheimer’s
disease and other disorders. Nat. Rev. Neurosci. 12, 723–738. http://dx.doi.org/
10.1038/nrn3114.

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., Zang,
Y.-F., 2008. An improved approach to detection of amplitude of low-frequency
fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods
172, 137–141. http://dx.doi.org/10.1016/j.jneumeth.2008.04.012.

Y. Iturria-Medina et al. NeuroImage 152 (2017) 60–77

77

http://dx.doi.org/10.1016/j.ijpsycho.2015.02.011
http://dx.doi.org/10.1016/j.neuroimage.2009.11.015
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref59
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref59
http://dx.doi.org/10.1126/scitranslmed.3006667
http://dx.doi.org/10.2307/2346178
http://dx.doi.org/10.1016/j.neuroimage.2008.05.002
http://dx.doi.org/10.1016/j.neuroimage.2008.05.002
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1016/j.neuroimage.2011.03.058
http://dx.doi.org/10.1016/j.neuroimage.2011.03.058
http://dx.doi.org/10.1016/j.neuroimage.2011.03.058
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref67
http://dx.doi.org/10.1038/nn.4328
http://dx.doi.org/10.1038/nn.4328
http://dx.doi.org/10.1093/brain/awu176
http://dx.doi.org/10.1093/brain/awu176
http://dx.doi.org/10.1523/JNEUROSCI.2531-15.2016
http://dx.doi.org/10.1523/JNEUROSCI.2531-15.2016
http://dx.doi.org/10.1038/nrn2336
http://dx.doi.org/10.1038/nrn2336
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref72
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref72
http://refhub.elsevier.com/S1053-8119(17)30168-4/sbref72
http://dx.doi.org/10.1016/j.neuroimage.2003.12.030
http://dx.doi.org/10.1016/j.neuroimage.2003.12.030
http://dx.doi.org/10.1038/nrn3114
http://dx.doi.org/10.1038/nrn3114
http://dx.doi.org/10.1016/j.jneumeth.2008.04.012

	Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer’s disease
	Introduction
	Methods
	Ethics statement
	Data description and processing
	Study participants
	Structural MRI acquisition/processing
	Fluorodeoxyglucose PET acquisition/processing
	Resting fMRI acquisition/processing
	ASL acquisition/processing
	Amyloid-ß PET acquisition/processing
	Diffusion weighted MRI (DW-MRI) acquisition
	Data quality control and clinical homogenization

	Multimodal connectivity estimation
	Vascular Networks
	Anatomical Networks

	Multifactorial causal model of brain (dis)organization and therapeutic intervention
	Interpreting factor-factor direct interactions and alteration spread
	Model evaluation and validation with real data
	Disease progression analysis
	Model cross-validation
	Most-likely disease triggering events and regional epicenters
	Evaluating possible therapeutic impacts
	Robustness to different brain parcellation schemes


	Results
	Multifactorial causal model of brain (dis)organization and intervention
	Reproducing and predicting multifactorial alteration patterns in LOAD progression
	Identifying potential triggering events in LOAD

	Characterizing direct factor-factor interactions and intra-brain propagation properties
	Identifying optimum therapeutic strategies for stopping and reversing LOAD progression

	Discussion
	Towards a multifactorial interpretation of brain disorders
	Applications on the design and evaluation of therapeutic interventions
	Limitations and future work

	Data availability
	Author contributions
	Conflict of interest
	Acknowledgments
	Supplementary material
	References




